Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sample-Efficient Personalization: Modeling User Parameters as Low Rank Plus Sparse Components (2210.03505v3)

Published 7 Oct 2022 in cs.LG, cs.CR, math.OC, and stat.ML

Abstract: Personalization of ML predictions for individual users/domains/enterprises is critical for practical recommendation systems. Standard personalization approaches involve learning a user/domain specific embedding that is fed into a fixed global model which can be limiting. On the other hand, personalizing/fine-tuning model itself for each user/domain -- a.k.a meta-learning -- has high storage/infrastructure cost. Moreover, rigorous theoretical studies of scalable personalization approaches have been very limited. To address the above issues, we propose a novel meta-learning style approach that models network weights as a sum of low-rank and sparse components. This captures common information from multiple individuals/users together in the low-rank part while sparse part captures user-specific idiosyncrasies. We then study the framework in the linear setting, where the problem reduces to that of estimating the sum of a rank-$r$ and a $k$-column sparse matrix using a small number of linear measurements. We propose a computationally efficient alternating minimization method with iterative hard thresholding -- AMHT-LRS -- to learn the low-rank and sparse part. Theoretically, for the realizable Gaussian data setting, we show that AMHT-LRS solves the problem efficiently with nearly optimal sample complexity. Finally, a significant challenge in personalization is ensuring privacy of each user's sensitive data. We alleviate this problem by proposing a differentially private variant of our method that also is equipped with strong generalization guarantees.

Summary

We haven't generated a summary for this paper yet.