Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How reliable are unsupervised author disambiguation algorithms in the assessment of research organization performance? (2210.03499v1)

Published 7 Sep 2022 in cs.DL

Abstract: The paper examines extent of bias in the performance rankings of research organisations when the assessments are based on unsupervised author-name disambiguation algorithms. It compares the outcomes of a research performance evaluation exercise of Italian universities using the unsupervised approach by Caron and van Eck (2014) for derivation of the universities' research staff, with those of a benchmark using the supervised algorithm of D'Angelo, Giuffrida, and Abramo (2011), which avails of input data. The methodology developed could be replicated for comparative analyses in other frameworks of national or international interest, meaning that practitioners would have a precise measure of the extent of distortions inherent in any evaluation exercises using unsupervised algorithms. This could in turn be useful in informing policy-makers' decisions on whether to invest in building national research staff databases, instead of settling for the unsupervised approaches with their measurement biases.

Citations (3)

Summary

We haven't generated a summary for this paper yet.