Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small fractional parts of polynomials and mean values of exponential sums (2210.03085v2)

Published 6 Oct 2022 in math.NT

Abstract: Let $k_i\ (i=1,2,\ldots,t)$ be natural numbers with $k_1>k_2>\cdots>k_t>0$, $k_1\geq 2$ and $t<k_1.$ Given real numbers $\alpha_{ji}\ (1\leq j\leq t,\ 1\leq i\leq s)$, we consider polynomials of the shape $$\varphi_i(x)=\alpha_{1i}x{k_1}+\alpha_{2i}x{k_2}+\cdots+\alpha_{ti}x{k_t},$$ and derive upper bounds for fractional parts of polynomials in the shape $$\varphi_1(x_1)+\varphi_2(x_2)+\cdots+\varphi_s(x_s),$$ by applying novel mean value estimates related to Vinogradov's mean value theorem. Our results improve on earlier Theorems of Baker (2017).

Summary

We haven't generated a summary for this paper yet.