Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ThoraX-PriorNet: A Novel Attention-Based Architecture Using Anatomical Prior Probability Maps for Thoracic Disease Classification (2210.02998v3)

Published 6 Oct 2022 in eess.IV, cs.CV, and cs.LG

Abstract: Objective: Computer-aided disease diagnosis and prognosis based on medical images is a rapidly emerging field. Many Convolutional Neural Network (CNN) architectures have been developed by researchers for disease classification and localization from chest X-ray images. It is known that different thoracic disease lesions are more likely to occur in specific anatomical regions compared to others. This article aims to incorporate this disease and region-dependent prior probability distribution within a deep learning framework. Methods: We present the ThoraX-PriorNet, a novel attention-based CNN model for thoracic disease classification. We first estimate a disease-dependent spatial probability, i.e., an anatomical prior, that indicates the probability of occurrence of a disease in a specific region in a chest X-ray image. Next, we develop a novel attention-based classification model that combines information from the estimated anatomical prior and automatically extracted chest region of interest (ROI) masks to provide attention to the feature maps generated from a deep convolution network. Unlike previous works that utilize various self-attention mechanisms, the proposed method leverages the extracted chest ROI masks along with the probabilistic anatomical prior information, which selects the region of interest for different diseases to provide attention. Results: The proposed method shows superior performance in disease classification on the NIH ChestX-ray14 dataset compared to existing state-of-the-art methods while reaching an area under the ROC curve (%AUC) of 84.67. Regarding disease localization, the anatomy prior attention method shows competitive performance compared to state-of-the-art methods, achieving an accuracy of 0.80, 0.63, 0.49, 0.33, 0.28, 0.21, and 0.04 with an Intersection over Union (IoU) threshold of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. J. B. Soriano et al., “Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the global burden of disease study 2017,” Lancet Respir. Med., vol. 8, no. 6, pp. 585–596, 2020.
  2. “Rise in global deaths and disability due to lung diseases over past three decades,” https://www.bmj.com/company/newsroom/rise-in-global-deaths-and-disability-due-to-lung-diseases-over-past-three-decades/, (Date last accessed Accessed: 12-18-2023).
  3. B. S. Kelly, L. A. Rainford, S. P. Darcy, E. C. Kavanagh, and R. J. Toomey, “The development of expertise in radiology: in chest radiograph interpretation,“expert” search pattern may predate “expert” levels of diagnostic accuracy for pneumothorax identification,” Radiology, vol. 280, no. 1, pp. 252–260, 2016.
  4. J. Cai, L. Lu, A. P. Harrison, X. Shi, P. Chen, and L. Yang, “Iterative attention mining for weakly supervised thoracic disease pattern localization in chest x-rays,” in MICCAI, 2018, pp. 589–598.
  5. B. Chen, J. Li, G. Lu, and D. Zhang, “Lesion location attention guided network for multi-label thoracic disease classification in chest X-rays,” IEEE J. Biomed. Health Inform., vol. 24, no. 7, pp. 2016–2027, 2019.
  6. X. Ouyang et al., “Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis,” IEEE Trans. Med. Imaging, vol. 40, no. 10, pp. 2698–2710, 2020.
  7. B. Chen, Z. Zhang, J. Lin, Y. Chen, and G. Lu, “Two-stream collaborative network for multi-label chest X-ray image classification with lung segmentation,” Pattern Recognit. Lett., vol. 135, pp. 221–227, 2020.
  8. U. Kamal, M. Zunaed, N. B. Nizam, and T. Hasan, “Anatomy-XNet: An anatomy aware convolutional neural network for thoracic disease classification in chest X-rays,” IEEE J.Biomed. Health. Inform., vol. 26, no. 11, 2022.
  9. A. M. Obeso, J. Benois-Pineau, M. S. G. Vázquez, and A. Á. R. Acosta, “Visual vs internal attention mechanisms in deep neural networks for image classification and object detection,” Pattern Recognit, vol. 123, p. 108411, 2022.
  10. Z. Ullah, M. Usman, S. Latif, and J. Gwak, “Densely attention mechanism based network for COVID-19 detection in chest X-rays,” Sci. Rep., vol. 13, no. 1, p. 261, 2023.
  11. M. Innat, M. F. Hossain, K. Mader, and A. Z. Kouzani, “A convolutional attention mapping deep neural network for classification and localization of cardiomegaly on chest X-rays,” Sci. Rep, vol. 13, no. 1, p. 6247, 2023.
  12. G. Hong, X. Chen, J. Chen, M. Zhang, Y. Ren, and X. Zhang, “A multi-scale gated multi-head attention depthwise separable cnn model for recognizing COVID-19,” Sci. Rep, vol. 11, no. 1, pp. 1–13, 2021.
  13. S. Guendel, S. Grbic, B. Georgescu, S. Liu, A. Maier, and D. Comaniciu, “Learning to recognize abnormalities in chest x-rays with location-aware dense networks,” in Iberoam. Congr. Pattern Recognit., 2018, pp. 757–765.
  14. W. Ye, J. Yao, H. Xue, and Y. Li, “Weakly supervised lesion localization with probabilistic-cam pooling,” arXiv, 2020.
  15. I. M. Baltruschat, H. Nickisch, M. Grass, T. Knopp, and A. Saalbach, “Comparison of deep learning approaches for multi-label chest X-ray classification,” Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019.
  16. J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-Excitation Networks,” IEEE Trans. Pattern Anal., vol. 42, no. 8, pp. 2011–2023, 2020.
  17. J. Hu, L. Shen, S. Albanie, G. Sun, and A. Vedaldi, “Gather-excite: Exploiting feature context in convolutional neural networks,” Adv. Neural Inf. Process Syst., vol. 31, 2018.
  18. B. Chen, Y. Huang, Q. Xia, and Q. Zhang, “Nonlocal spatial attention module for image classification,” Int. J. Adv. Robot, vol. 17, no. 5, p. 1729881420938927, 2020.
  19. H. Wang, S. Wang, Z. Qin, Y. Zhang, R. Li, and Y. Xia, “Triple attention learning for classification of 14 thoracic diseases using chest radiography,” Med. Image Anal., vol. 67, p. 101846, 2021.
  20. R. Zhang, F. Yang, Y. Luo, J. Liu, J. Li, and C. Wang, “Part-aware mask-guided attention for thorax disease classification,” Entropy, vol. 23, no. 6, p. 653, 2021.
  21. S. Roy, T. Meena, and S.-J. Lim, “Demystifying supervised learning in healthcare 4.0: A new reality of transforming diagnostic medicine,” Diagnostics, vol. 12, no. 10, 2022.
  22. X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases,” in IEEE CVPR, 2017, pp. 2097–2106.
  23. Y. Tang, X. Wang, A. P. Harrison, L. Lu, J. Xiao, and R. M. Summers, “Attention-guided curriculum learning for weakly supervised classification and localization of thoracic diseases on chest radiographs,” in Int. WORKS Mach. Learn. Med. Imaging, 2018, pp. 249–258.
  24. L. Yao, J. Prosky, E. Poblenz, B. Covington, and K. Lyman, “Weakly supervised medical diagnosis and localization from multiple resolutions,” arXiv, 2018.
  25. X. Ouyang, S. Karanam, Z. Wu, T. Chen, J. Huo, X. S. Zhou, Q. Wang, and J.-Z. Cheng, “Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis,” IEEE Trans. Med. Imaging, vol. 40, no. 10, pp. 2698–2710, 2020.
  26. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual explanations from deep networks via gradient-based localization,” in IEEE ICCV, 2017, pp. 618–626.
  27. A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks,” in IEEE WACV, 2018, pp. 839–847.
  28. M. Bany Muhammad and M. Yeasin, “Eigen-CAM: Visual explanations for deep convolutional neural networks,” SN Computer Science, vol. 2, pp. 1–14, 2021.
  29. E. Rozenberg, D. Freedman, and A. A. Bronstein, “Learning to localize objects using limited annotation, with applications to thoracic diseases,” IEEE Access, vol. 9, pp. 67 620–67 633, 2021.
  30. X. Zhu et al., “PCAN: Pixel-wise classification and attention network for thoracic disease classification and weakly supervised localization,” Comput Med Imaging Graph, vol. 102, p. 102137, 2022.
  31. Y. Han et al., “Knowledge-augmented contrastive learning for abnormality classification and localization in chest X-rays with radiomics using a feedback loop,” in 2022 IEEE WACV, 2022, pp. 1789–1798.
  32. J. Xiao, Y. Bai, A. L. Yuille, and Z. Zhou, “Delving into masked autoencoders for multi-label thorax disease classification,” 2023 IEEE WACV, pp. 3577–3589, 2022.
  33. F. Li et al., “Modeling long-range dependencies for weakly supervised disease classification and localization on chest x-ray,” Quant Imaging Med Surg, vol. 12, no. 6, pp. 3364–3378, 2022.
  34. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in MICCAI, 2015, pp. 234–241.
  35. J. Shiraishi et al., “Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules,” AJR Am. J. Roentgenol, vol. 174, no. 1, pp. 71–74, 2000.
  36. F. P. Preparata and S. J. Hong, “Convex hulls of finite sets of points in two and three dimensions,” Communications of the ACM, vol. 20, no. 2, pp. 87–93, 1977.
  37. S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” in ECCV, 2018, pp. 3–19.
  38. A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,” in ICML WORKS WDLASL, 2013.
  39. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in IEEE CVPR, 2017, pp. 4700–4708.
  40. J. Irvin et al., “Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison,” in Proc. Innov. Appl. Artif., vol. 33, no. 01, 2019, pp. 590–597.
  41. J. Liu, G. Zhao, Y. Fei, M. Zhang, Y. Wang, and Y. Yu, “Align, attend and locate: Chest x-ray diagnosis via contrast induced attention network with limited supervision,” in IEEE ICCV, 2019, pp. 10 632–10 641.
  42. J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in ECCV, 2016, pp. 694–711.
  43. J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in IEEE CVPR, 6 2009, pp. 248–255.
  44. C. Yan, J. Yao, R. Li, Z. Xu, and J. Huang, “Weakly supervised deep learning for thoracic disease classification and localization on chest x-rays,” in ACM-BCB, 2018, pp. 103–110.
  45. L. Luo et al., “Deep mining external imperfect data for chest X-ray disease screening,” IEEE Trans. Med. Imaging, vol. 39, no. 11, pp. 3583–3594, 2020.
  46. S. Suzuki and K. be, “Topological structural analysis of digitized binary images by border following,” Comput. graph, vol. 30, no. 1, pp. 32–46, 1985.
  47. Z. Li et al., “Thoracic disease identification and localization with limited supervision,” in IEEE CVPR, 2018, pp. 8290–8299.
  48. L. Yao, E. Poblenz, D. Dagunts, B. Covington, D. Bernard, and K. Lyman, “Learning to diagnose from scratch by exploiting dependencies among labels,” arXiv, 2017.
  49. X. Wang, Y. Peng, L. Lu, Z. Lu, and R. M. Summers, “Tienet: Text-image embedding network for common thorax disease classification and reporting in chest x-rays,” in IEEE CVPR, 2018, pp. 9049–9058.
  50. T. K. Khanh Ho and J. Gwak, “Multiple feature integration for classification of thoracic disease in chest radiography,” Appl. Sci., vol. 9, no. 19, p. 4130, 2019.
  51. Q. Guan and Y. Huang, “Multi-label chest X-ray image classification via category-wise residual attention learning,” Pattern Recognit. Lett., vol. 130, pp. 259–266, 2020.
  52. F. Liu, Y. Tian, Y. Chen, Y. Liu, V. Belagiannis, and G. Carneiro, “ACPL: Anti-curriculum pseudo-labelling for semi-supervised medical image classification,” in IEE CVPR, 2022, pp. 20 697–20 706.
  53. P. Rajpurkar et al., “Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning,” arXiv, 2017.
  54. B. Chen, J. Li, X. Guo, and G. Lu, “DualCheXNet: dual asymmetric feature learning for thoracic disease classification in chest X-rays,” Biomed. Signal Process. Con., vol. 53, p. 101554, 2019.
  55. D. Arias-Garzón et al., “Covid-19 detection in X-ray images using convolutional neural networks,” MLWA, vol. 6, p. 100138, 2021.
  56. H. Liu, L. Wang, Y. Nan, F. Jin, Q. Wang, and J. Pu, “SDFN: Segmentation-based deep fusion network for thoracic disease classification in chest X-ray images,” Comput. Med. Imaging Graph., vol. 75, pp. 66–73, 2019.
  57. D. Keidar et al., “COVID-19 classification of X-ray images using deep neural networks,” Eur. Radiol., vol. 31, no. 12, pp. 9654–9663, 2021.
  58. Y. Xu, H.-K. Lam, and G. Jia, “MANet: A two-stage deep learning method for classification of COVID-19 from chest X-ray images,” Neurocomputing, vol. 443, pp. 96–105, 2021.
  59. H. H. Pham, T. T. Le, D. Q. Tran, D. T. Ngo, and H. Q. Nguyen, “Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels,” Neurocomputing, vol. 437, pp. 186–194, 2021.
  60. Y. Han, G. Holste, Y. Ding, A. Tewfik, Y. Peng, and Z. Wang, “Radiomics-guided global-local transformer for weakly supervised pathology localization in chest X-rays,” IEEE Trans Med Imaging, vol. 42, no. 3, pp. 750–761, 2023.
  61. C. Nadeau and Y. Bengio, “Inference for the generalization error,” Machine Learning, vol. 52, no. 3, pp. 239–281, 2003.
  62. H. Wang and Y. Xia, “Domain-ensemble learning with cross-domain mixup for thoracic disease classification in unseen domains,” Biomed. Signal Process. Control, vol. 81, p. 104488, 2023.
  63. H. Guan and M. Liu, “Domain adaptation for medical image analysis: A survey,” IEEE Trans. Biomed. Eng., vol. 69, no. 3, pp. 1173–1185, 2022.
  64. M. Zunaed, M. A. Haque, and T. Hasan, “Learning to generalize towards unseen domains via a content-aware style invariant model for disease detection from chest X-rays,” arXiv, 2023.
  65. H. Q. Nguyen et al., “VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations,” Sci. Data, vol. 9, p. 429, 2022.
  66. Q. Guan, Y. Huang, Y. Luo, P. Liu, M. Xu, and Y. Yang, “Discriminative feature learning for thorax disease classification in chest x-ray images,” IEEE Trans Image Process, vol. 30, pp. 2476–2487, 2021.
Citations (3)

Summary

We haven't generated a summary for this paper yet.