Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

POPNASv2: An Efficient Multi-Objective Neural Architecture Search Technique (2210.02959v1)

Published 6 Oct 2022 in cs.LG and cs.AI

Abstract: Automating the research for the best neural network model is a task that has gained more and more relevance in the last few years. In this context, Neural Architecture Search (NAS) represents the most effective technique whose results rival the state of the art hand-crafted architectures. However, this approach requires a lot of computational capabilities as well as research time, which makes prohibitive its usage in many real-world scenarios. With its sequential model-based optimization strategy, Progressive Neural Architecture Search (PNAS) represents a possible step forward to face this resources issue. Despite the quality of the found network architectures, this technique is still limited in research time. A significant step in this direction has been done by Pareto-Optimal Progressive Neural Architecture Search (POPNAS), which expands PNAS with a time predictor to enable a trade-off between search time and accuracy, considering a multi-objective optimization problem. This paper proposes a new version of the Pareto-Optimal Progressive Neural Architecture Search, called POPNASv2. Our approach enhances its first version and improves its performance. We expanded the search space by adding new operators and improved the quality of both predictors to build more accurate Pareto fronts. Moreover, we introduced cell equivalence checks and enriched the search strategy with an adaptive greedy exploration step. Our efforts allow POPNASv2 to achieve PNAS-like performance with an average 4x factor search time speed-up.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Andrea Falanti (3 papers)
  2. Eugenio Lomurno (23 papers)
  3. Stefano Samele (3 papers)
  4. Danilo Ardagna (12 papers)
  5. Matteo Matteucci (91 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.