Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fault-tolerant Coding for Entanglement-Assisted Communication (2210.02939v2)

Published 6 Oct 2022 in quant-ph, cs.IT, math-ph, math.IT, and math.MP

Abstract: Channel capacities quantify the optimal rates of sending information reliably over noisy channels. Usually, the study of capacities assumes that the circuits which sender and receiver use for encoding and decoding consist of perfectly noiseless gates. In the case of communication over quantum channels, however, this assumption is widely believed to be unrealistic, even in the long-term, due to the fragility of quantum information, which is affected by the process of decoherence. Christandl and M\"uller-Hermes have therefore initiated the study of fault-tolerant channel coding for quantum channels, i.e. coding schemes where encoder and decoder circuits are affected by noise, and have used techniques from fault-tolerant quantum computing to establish coding theorems for sending classical and quantum information in this scenario. Here, we extend these methods to the case of entanglement-assisted communication, in particular proving that the fault-tolerant capacity approaches the usual capacity when the gate error approaches zero. A main tool, which might be of independent interest, is the introduction of fault-tolerant entanglement distillation. We furthermore focus on the modularity of the techniques used, so that they can be easily adopted in other fault-tolerant communication scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. P. Belzig, M. Christandl, and A. Müller-Hermes, “Fault-tolerant coding for entanglement-assisted communication,” in 2023 IEEE International Symposium on Information Theory (ISIT), 2023, pp. 84–89. [Online]. Available: https://doi.org/10.1109/ISIT54713.2023.10206950
  2. C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
  3. A. S. Holevo, “The capacity of the quantum channel with general signal states,” IEEE Transactions on Information Theory, vol. 44, no. 1, pp. 269–273, 1998.
  4. B. Schumacher and M. D. Westmoreland, “Sending classical information via noisy quantum channels,” Physical Review A, vol. 56, no. 1, pp. 131–138, 1997.
  5. S. Lloyd, “Capacity of the noisy quantum channel,” Physical Review A, vol. 55, no. 3, pp. 1613–1622, 1997.
  6. P. W. Shor, “The quantum channel capacity and coherent information,” Lecture notes, MSRI Workshop on Quantum Computation, available at www.msri.org/programs/53, 2002.
  7. I. Devetak, “The private classical capacity and quantum capacity of a quantum channel,” IEEE Transactions on Information Theory, vol. 51, no. 1, pp. 44–55, 2005.
  8. C. H. Bennett, P. W. Shor, J. A. Smolin, and A. Thapliyal, “Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem,” Information Theory, IEEE Transactions on, vol. 48, pp. 2637–2655, 2002.
  9. J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, 2018.
  10. M. Christandl and A. Müller-Hermes, “Fault-tolerant coding for quantum communication,” IEEE Transactions on Information Theory, vol. 70, no. 1, pp. 282–317, 2024.
  11. D. Aharonov and M. Ben-Or, “Fault-tolerant quantum computation with constant error rate,” SIAM Journal on Computing, vol. 38, no. 4, pp. 1207–1282, 2008. [Online]. Available: https://doi.org/10.1137/S0097539799359385
  12. E. Knill, R. Laflamme, and W. H. Zurek, “Resilient quantum computation: error models and thresholds,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1969, p. 365–384, 1998.
  13. A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics, vol. 303, no. 1, p. 2–30, 2003.
  14. P. Aliferis, D. Gottesman, and J. Preskill, “Quantum accuracy threshold for concatenated distance-3 codes,” Quantum information and computation, vol. 6, 2005.
  15. Z. Chen, K. J. Satzinger, J. Atalaya et al., “Exponential suppression of bit or phase flip errors with repetitive error correction,” Nature, vol. 595, no. 7867, pp. 383–387, 2021.
  16. A. Steane, “Multiple-particle interference and quantum error correction,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 452, no. 1954, p. 2551–2577, 1996.
  17. E. Knill and R. Laflamme, “Concatenated quantum codes,” arXiv:quant-ph/9608012, 1996.
  18. P. Mazurek, A. Grudka, M. Horodecki, P. Horodecki, J. Łodyga, L. Pankowski, and A. Przysiężna, “Long-distance quantum communication over noisy networks without long-time quantum memory,” Physical Review A, vol. 90, no. 6, 2014.
  19. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett., vol. 69, pp. 2881–2884, 1992.
  20. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett., vol. 70, pp. 1895–1899, 1993.
  21. H.-K. Lo and S. Popescu, “Classical communication cost of entanglement manipulation: Is entanglement an interconvertible resource?” Physical Review Letters, vol. 83, no. 7, pp. 1459–1462, 1999.
  22. A. Harrow and H.-K. Lo, “A tight lower bound on the classical communication cost of entanglement dilution,” IEEE Transactions on Information Theory, vol. 50, pp. 319–327, 2004.
  23. C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter, “The quantum reverse Shannon theorem and resource tradeoffs for simulating quantum channels,” IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2926–2959, 2014.
  24. M.-H. Hsieh, I. Devetak, and A. Winter, “Entanglement-assisted capacity of quantum multiple-access channels,” IEEE Transactions on Information Theory, vol. 54, no. 7, pp. 3078–3090, 2008.
  25. W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the American Statistical Association, vol. 58, no. 301, pp. 13–30, 1963.
  26. H. Boche, C. Deppe, J. Nötzel, and A. Winter, “Fully quantum arbitrarily varying channels: Random coding capacity and capacity dichotomy,” in 2018 IEEE International Symposium on Information Theory (ISIT).   IEEE Press, 2018, p. 2012–2016. [Online]. Available: https://doi.org/10.1109/ISIT.2018.8437610
  27. R. Ahlswede, I. Bjelaković, H. Boche, and J. Nötzel, “Quantum capacity under adversarial quantum noise: Arbitrarily varying quantum channels,” Communications in Mathematical Physics, vol. 317, no. 1, pp. 103–156, 2012.
  28. C. Fuchs and J. van de Graaf, “Cryptographic distinguishability measures for quantum-mechanical states,” Information Theory, IEEE Transactions on, vol. 45, pp. 1216 – 1227, 1999.
  29. D. Kretschmann and R. F. Werner, “Tema con variazioni: quantum channel capacity,” New Journal of Physics, vol. 6, pp. 26–26, 2004.
  30. M. E. Shirokov, “Tight uniform continuity bounds for the quantum conditional mutual information, for the Holevo quantity, and for capacities of quantum channels,” Journal of Mathematical Physics, vol. 58, no. 10, p. 102202, 2017.
  31. I. Devetak and A. Winter, “Distillation of secret key and entanglement from quantum states,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 461, 2003.
  32. S. Bose, M. B. Plenio, and V. Vedral, “Mixed state dense coding and its relation to entanglement measures,” arXiv:quant-ph/9810025, 1998.
  33. G. Bowen, “Classical information capacity of superdense coding,” Phys. Rev. A, vol. 63, p. 022302, 2001.
  34. Q. Zhuang, E. Y. Zhu, and P. W. Shor, “Additive classical capacity of quantum channels assisted by noisy entanglement,” Phys. Rev. Lett., vol. 118, p. 200503, 2017.
  35. M. Horodecki, P. Horodecki, R. Horodecki, D. W. Leung, and B. M. Terhal, “Classical capacity of a noiseless quantum channel assisted by noisy entanglement,” Quantum Info. Comput., vol. 1, no. 3, p. 70–78, 2001.
  36. I. Devetak, A. W. Harrow, and A. J. Winter, “A resource framework for quantum Shannon theory,” IEEE Transactions on Information Theory, vol. 54, no. 10, pp. 4587–4618, 2008.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets