Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Maximum-Entropy-Driven Technique for Low-Rank Orthogonal Nonnegative Matrix Factorization with $\ell_0$-Norm sparsity Constraint (2210.02672v3)

Published 6 Oct 2022 in cs.DS, cs.IT, cs.LG, math.IT, and math.PR

Abstract: In data-driven control and machine learning, a common requirement involves breaking down large matrices into smaller, low-rank factors that possess specific levels of sparsity. This paper introduces an innovative solution to the orthogonal nonnegative matrix factorization (ONMF) problem. The objective is to approximate input data by using two low-rank nonnegative matrices, adhering to both orthogonality and $\ell_0$-norm sparsity constraints. the proposed maximum-entropy-principle based framework ensures orthogonality and sparsity of features or the mixing matrix, while maintaining nonnegativity in both. Additionally, the methodology offers a quantitative determination of the ``true'' number of underlying features, a crucial hyperparameter for ONMF. Experimental evaluation on synthetic and a standard datasets highlights the method's superiority in terms of sparsity, orthogonality, and computational speed compared to existing approaches. Notably, the proposed method achieves comparable or improved reconstruction errors in line with the literature.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. P. Carmona-Saez, R. D. Pascual-Marqui, F. Tirado, J. M. Carazo, and A. Pascual-Montano, “Biclustering of gene expression data by non-smooth non-negative matrix factorization,” BMC bioinformatics, vol. 7, no. 1, pp. 1–18, 2006.
  2. F. Esposito, N. D. Buono, and L. Selicato, “Nonnegative matrix factorization models for knowledge extraction from biomedical and other real world data,” PAMM, vol. 20, no. 1, jan 2021. [Online]. Available: https://doi.org/10.1002%2Fpamm.202000032
  3. N. Nadisic, A. Vandaele, J. E. Cohen, and N. Gillis, “Sparse separable nonnegative matrix factorization,” 2020. [Online]. Available: https://arxiv.org/abs/2006.07553
  4. K. Rose, “Deterministic annealing for clustering, compression, classification, regression, and related optimization problems,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2210–2239, 1998.
  5. C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnegative matrix t-factorizations for clustering,” in Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, 2006, pp. 126–135.
  6. B. Li, G. Zhou, and A. Cichocki, “Two efficient algorithms for approximately orthogonal nonnegative matrix factorization,” IEEE Signal Processing Letters, vol. 22, no. 7, pp. 843–846, 2015.
  7. Z. Yuan and E. Oja, “Projective nonnegative matrix factorization for image compression and feature extraction,” in Image Analysis, H. Kalviainen, J. Parkkinen, and A. Kaarna, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 333–342.
  8. M. Stražar, M. Žitnik, B. Zupan, J. Ule, and T. Curk, “Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins,” Bioinformatics, vol. 32, no. 10, pp. 1527–1535, Jan. 2016. [Online]. Available: https://doi.org/10.1093/bioinformatics/btw003
  9. Z. Yang and J. Laaksonen, “Multiplicative updates for non-negative projections,” Neurocomputing, vol. 71, no. 1, pp. 363–373, 2007, dedicated Hardware Architectures for Intelligent Systems Advances on Neural Networks for Speech and Audio Processing. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231207000318
  10. S. Choi, “Algorithms for orthogonal nonnegative matrix factorization,” 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1828–1832, 2008.
  11. M. Charikar and L. Hu, “Approximation algorithms for orthogonal non-negative matrix factorization,” 2021. [Online]. Available: https://arxiv.org/abs/2103.01398
  12. F. Pompili, N. Gillis, P.-A. Absil, and F. Glineur, “Two algorithms for orthogonal nonnegative matrix factorization with application to clustering,” Neurocomputing, vol. 141, pp. 15–25, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231214004068
  13. J. Kim and H. Park, “Sparse nonnegative matrix factorization for clustering,” Georgia Institute of Technology, Tech. Rep., 2008.
  14. L. Dong, Y. Yuan, and X. Luxs, “Spectral–spatial joint sparse nmf for hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 3, pp. 2391–2402, 2021.
  15. R. Peharz and F. Pernkopf, “Sparse nonnegative matrix factorization with l0-constraints,” Neurocomputing, vol. 80, pp. 38–46, 2012, special Issue on Machine Learning for Signal Processing 2010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231211006370
  16. A. Srivastava, M. Baranwal, and S. Salapaka, “On the persistence of clustering solutions and true number of clusters in a dataset,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 5000–5007.
  17. S. E. Baranzini, P. Mousavi, J. Rio, S. J. Caillier, A. Stillman, P. Villoslada, M. M. Wyatt, M. Comabella, L. D. Greller, R. Somogyi, X. Montalban, and J. R. Oksenberg, “Transcription-based prediction of response to IFNβ𝛽\betaitalic_β using supervised computational methods,” PLoS Biology, vol. 3, no. 1, p. e2, Dec. 2004. [Online]. Available: https://doi.org/10.1371/journal.pbio.0030002
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com