Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Schema Encoding for Transferable Dialogue State Tracking (2210.02351v1)

Published 5 Oct 2022 in cs.CL

Abstract: Dialogue state tracking (DST) is an essential sub-task for task-oriented dialogue systems. Recent work has focused on deep neural models for DST. However, the neural models require a large dataset for training. Furthermore, applying them to another domain needs a new dataset because the neural models are generally trained to imitate the given dataset. In this paper, we propose Schema Encoding for Transferable Dialogue State Tracking (SETDST), which is a neural DST method for effective transfer to new domains. Transferable DST could assist developments of dialogue systems even with few dataset on target domains. We use a schema encoder not just to imitate the dataset but to comprehend the schema of the dataset. We aim to transfer the model to new domains by encoding new schemas and using them for DST on multi-domain settings. As a result, SET-DST improved the joint accuracy by 1.46 points on MultiWOZ 2.1.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hyunmin Jeon (3 papers)
  2. Gary Geunbae Lee (53 papers)