Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games

Published 4 Oct 2022 in cs.LG, cs.AI, and cs.GT | (2210.01907v1)

Abstract: Existing studies on provably efficient algorithms for Markov games (MGs) almost exclusively build on the "optimism in the face of uncertainty" (OFU) principle. This work focuses on a different approach of posterior sampling, which is celebrated in many bandits and reinforcement learning settings but remains under-explored for MGs. Specifically, for episodic two-player zero-sum MGs, a novel posterior sampling algorithm is developed with general function approximation. Theoretical analysis demonstrates that the posterior sampling algorithm admits a $\sqrt{T}$-regret bound for problems with a low multi-agent decoupling coefficient, which is a new complexity measure for MGs, where $T$ denotes the number of episodes. When specialized to linear MGs, the obtained regret bound matches the state-of-the-art results. To the best of our knowledge, this is the first provably efficient posterior sampling algorithm for MGs with frequentist regret guarantees, which enriches the toolbox for MGs and promotes the broad applicability of posterior sampling.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.