Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-view Human Body Mesh Translator (2210.01886v1)

Published 4 Oct 2022 in cs.CV and cs.AI

Abstract: Existing methods for human mesh recovery mainly focus on single-view frameworks, but they often fail to produce accurate results due to the ill-posed setup. Considering the maturity of the multi-view motion capture system, in this paper, we propose to solve the prior ill-posed problem by leveraging multiple images from different views, thus significantly enhancing the quality of recovered meshes. In particular, we present a novel \textbf{M}ulti-view human body \textbf{M}esh \textbf{T}ranslator (MMT) model for estimating human body mesh with the help of vision transformer. Specifically, MMT takes multi-view images as input and translates them to targeted meshes in a single-forward manner. MMT fuses features of different views in both encoding and decoding phases, leading to representations embedded with global information. Additionally, to ensure the tokens are intensively focused on the human pose and shape, MMT conducts cross-view alignment at the feature level by projecting 3D keypoint positions to each view and enforcing their consistency in geometry constraints. Comprehensive experiments demonstrate that MMT outperforms existing single or multi-view models by a large margin for human mesh recovery task, notably, 28.8\% improvement in MPVE over the current state-of-the-art method on the challenging HUMBI dataset. Qualitative evaluation also verifies the effectiveness of MMT in reconstructing high-quality human mesh. Codes will be made available upon acceptance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.