Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ProtoBandit: Efficient Prototype Selection via Multi-Armed Bandits (2210.01860v4)

Published 4 Oct 2022 in cs.LG, cs.AI, and stat.ML

Abstract: In this work, we propose a multi-armed bandit-based framework for identifying a compact set of informative data instances (i.e., the prototypes) from a source dataset $S$ that best represents a given target set $T$. Prototypical examples of a given dataset offer interpretable insights into the underlying data distribution and assist in example-based reasoning, thereby influencing every sphere of human decision-making. Current state-of-the-art prototype selection approaches require $O(|S||T|)$ similarity comparisons between source and target data points, which becomes prohibitively expensive for large-scale settings. We propose to mitigate this limitation by employing stochastic greedy search in the space of prototypical examples and multi-armed bandits for reducing the number of similarity comparisons. Our randomized algorithm, ProtoBandit, identifies a set of $k$ prototypes incurring $O(k3|S|)$ similarity comparisons, which is independent of the size of the target set. An interesting outcome of our analysis is for the $k$-medoids clustering problem $T = S$ setting) in which we show that our algorithm ProtoBandit approximates the BUILD step solution of the partitioning around medoids (PAM) method in $O(k3|S|)$ complexity. Empirically, we observe that ProtoBandit reduces the number of similarity computation calls by several orders of magnitudes ($100-1000$ times) while obtaining solutions similar in quality to those from state-of-the-art approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.