Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anatomically constrained CT image translation for heterogeneous blood vessel segmentation (2210.01713v1)

Published 4 Oct 2022 in eess.IV, cs.CV, and cs.LG

Abstract: Anatomical structures such as blood vessels in contrast-enhanced CT (ceCT) images can be challenging to segment due to the variability in contrast medium diffusion. The combined use of ceCT and contrast-free (CT) CT images can improve the segmentation performances, but at the cost of a double radiation exposure. To limit the radiation dose, generative models could be used to synthesize one modality, instead of acquiring it. The CycleGAN approach has recently attracted particular attention because it alleviates the need for paired data that are difficult to obtain. Despite the great performances demonstrated in the literature, limitations still remain when dealing with 3D volumes generated slice by slice from unpaired datasets with different fields of view. We present an extension of CycleGAN to generate high fidelity images, with good structural consistency, in this context. We leverage anatomical constraints and automatic region of interest selection by adapting the Self-Supervised Body Regressor. These constraints enforce anatomical consistency and allow feeding anatomically-paired input images to the algorithm. Results show qualitative and quantitative improvements, compared to stateof-the-art methods, on the translation task between ceCT and CT images (and vice versa).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Giammarco La Barbera (4 papers)
  2. Haithem Boussaid (4 papers)
  3. Francesco Maso (1 paper)
  4. Sabine Sarnacki (3 papers)
  5. Laurence Rouet (3 papers)
  6. Pietro Gori (34 papers)
  7. Isabelle Bloch (45 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.