Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-marginal Approximation of the Linear Gromov-Wasserstein Distance (2210.01596v2)

Published 4 Oct 2022 in math.NA, cs.NA, and math.OC

Abstract: Recently, two concepts from optimal transport theory have successfully been brought to the Gromov--Wasserstein (GW) setting. This introduces a linear version of the GW distance and multi-marginal GW transport. The former can reduce the computational complexity when computing all GW distances of a large set of inputs. The latter allows for a simultaneous matching of more than two marginals, which can for example be used to compute GW barycenters. The aim of this paper is to show an approximation result which characterizes the linear version as a limit of a multi-marginal GW formulation.

Summary

We haven't generated a summary for this paper yet.