Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A numerical model preserving nontrivial steady-state solutions for predicting waves run-up on coastal areas (2210.01499v1)

Published 4 Oct 2022 in math.NA and cs.NA

Abstract: In this study, a numerical model preserving a class of nontrivial steady-state solutions is proposed to predict waves propagation and waves run-up on coastal zones. The numerical model is based on the Saint-Venant system with source terms due to variable bottom topography and bed friction effects. The resulting nonlinear system is solved using a Godunov-type finite volume method on unstructured triangular grids. A special piecewise linear reconstruction of the solution is implemented with a correction technique to ensure the accuracy of the method and the positivity of the computed water depth. Efficient semi-implicit techniques for the friction terms and a well-balanced formulation for the bottom topography are used to exactly preserve stationary steady-state s solutions. Moreover, we prove that the numerical scheme preserves a class of nontrivial steady-state solutions. To validate the proposed numerical model against experiments, we first demonstrate its ability to preserve nontrivial steady-state solutions and then we model several laboratory experiments for the prediction of waves run-up on sloping beaches. The numerical simulations are in good agreement with laboratory experiments which confirms the robustness and accuracy of the proposed numerical model in predicting waves propagation on coastal areas.

Summary

We haven't generated a summary for this paper yet.