Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Benchmarking optimization algorithms for auto-tuning GPU kernels (2210.01465v1)

Published 4 Oct 2022 in cs.DC, cs.GR, and cs.PF

Abstract: Recent years have witnessed phenomenal growth in the application, and capabilities of Graphical Processing Units (GPUs) due to their high parallel computation power at relatively low cost. However, writing a computationally efficient GPU program (kernel) is challenging, and generally only certain specific kernel configurations lead to significant increases in performance. Auto-tuning is the process of automatically optimizing software for highly-efficient execution on a target hardware platform. Auto-tuning is particularly useful for GPU programming, as a single kernel requires re-tuning after code changes, for different input data, and for different architectures. However, the discrete, and non-convex nature of the search space creates a challenging optimization problem. In this work, we investigate which algorithm produces the fastest kernels if the time-budget for the tuning task is varied. We conduct a survey by performing experiments on 26 different kernel spaces, from 9 different GPUs, for 16 different evolutionary black-box optimization algorithms. We then analyze these results and introduce a novel metric based on the PageRank centrality concept as a tool for gaining insight into the difficulty of the optimization problem. We demonstrate that our metric correlates strongly with observed tuning performance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.