Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning of Dynamical Systems under Adversarial Attacks -- Null Space Property Perspective (2210.01421v2)

Published 4 Oct 2022 in eess.SY, cs.SY, math.ST, and stat.TH

Abstract: We study the identification of a linear time-invariant dynamical system affected by large-and-sparse disturbances modeling adversarial attacks or faults. Under the assumption that the states are measurable, we develop necessary and sufficient conditions for the recovery of the system matrices by solving a constrained lasso-type optimization problem. In addition, we provide an upper bound on the estimation error whenever the disturbance sequence is a combination of small noise values and large adversarial values. Our results depend on the null space property that has been widely used in the lasso literature, and we investigate under what conditions this property holds for linear time-invariant dynamical systems. Lastly, we further study the conditions for a specific probabilistic model and support the results with numerical experiments.

Citations (3)

Summary

We haven't generated a summary for this paper yet.