Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Influence Maximization: Divide and Conquer (2210.01203v2)

Published 3 Oct 2022 in physics.soc-ph and cs.SI

Abstract: The problem of influence maximization, i.e., finding the set of nodes having maximal influence on a network, is of great importance for several applications. In the past two decades, many heuristic metrics to spot influencers have been proposed. Here, we introduce a framework to boost the performance of any such metric. The framework consists in dividing the network into sectors of influence, and then selecting the most influential nodes within these sectors. We explore three different methodologies to find sectors in a network: graph partitioning, graph hyperbolic embedding, and community structure. The framework is validated with a systematic analysis of real and synthetic networks. We show that the gain in performance generated by dividing a network into sectors before selecting the influential spreaders increases as the modularity and heterogeneity of the network increase. Also, we show that the division of the network into sectors can be efficiently performed in a time that scales linearly with the network size, thus making the framework applicable to large-scale influence maximization problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Siddharth Patwardhan (15 papers)
  2. Filippo Radicchi (79 papers)
  3. Santo Fortunato (56 papers)

Summary

We haven't generated a summary for this paper yet.