Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PAC-Bayes Generalisation Bounds for Heavy-Tailed Losses through Supermartingales (2210.00928v2)

Published 3 Oct 2022 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: While PAC-Bayes is now an established learning framework for light-tailed losses (\emph{e.g.}, subgaussian or subexponential), its extension to the case of heavy-tailed losses remains largely uncharted and has attracted a growing interest in recent years. We contribute PAC-Bayes generalisation bounds for heavy-tailed losses under the sole assumption of bounded variance of the loss function. Under that assumption, we extend previous results from \citet{kuzborskij2019efron}. Our key technical contribution is exploiting an extention of Markov's inequality for supermartingales. Our proof technique unifies and extends different PAC-Bayesian frameworks by providing bounds for unbounded martingales as well as bounds for batch and online learning with heavy-tailed losses.

Citations (17)

Summary

We haven't generated a summary for this paper yet.