Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A proof of Dunfield-Gukov-Rasmussen Conjecture (2210.00878v2)

Published 3 Oct 2022 in math.GT and math.AT

Abstract: In 2005 Dunfield, Gukov and Rasmussen conjectured an existence of the spectral sequence from the reduced triply graded Khovanov-Rozansky homology of a knot to its knot Floer homology defined by Ozsv\'ath and Szab\'o. The main result of this paper is a proof of this conjecture. For this purpose, we construct a bigraded spectral sequence from the $\mathfrak{gl}_0$ homology constructed by the last two authors to the knot Floer homology. Using the fact that the $\mathfrak{gl}_0$ homology comes equipped with a spectral sequence from the reduced triply graded homology, we obtain our main result. The first spectral sequence is of Bockstein type and comes from a subtle manipulation of coefficients. The main tools are quantum traces of foams and of singular Soergel bimodules and a $\mathbb Z$-valued cube of resolutions model for knot Floer homology originally constructed by Ozsv\'ath and Szab\'o over the field of two elements. As an application, we deduce that the $\mathfrak{gl}_0$ homology as well as the reduced triply graded Khovanov-Rozansky one detect the unknot, the two trefoils, the figure eight knot and the cinquefoil.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com