Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How close Are Integrable and Non-integrable Models: A Parametric Case Study Based on the Salerno Model (2210.00851v1)

Published 30 Sep 2022 in nlin.PS and nlin.CD

Abstract: In the present work we revisit the Salerno model as a prototypical system that interpolates between a well-known integrable system (the Ablowitz-Ladik lattice) and an experimentally tractable non-integrable one (the discrete nonlinear Schr\"odinger model). The question we ask is: for "generic" initial data, how close are the integrable to the non-integrable models? Our more precise formulation of this question is: how well is the constancy of formerly conserved quantities preserved in the non-integrable case? Upon examining this, we find that even slight deviations from integrability can be sensitively felt by measuring these formerly conserved quantities in the case of the Salerno model. However, given that the knowledge of these quantities requires a deep physical and mathematical analysis of the system, we seek a more "generic" diagnostic towards a manifestation of integrability breaking. We argue, based on our Salerno model computations, that the full spectrum of Lyapunov exponents could be a sensitive diagnostic to that effect.

Citations (5)

Summary

We haven't generated a summary for this paper yet.