Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NAS-based Recursive Stage Partial Network (RSPNet) for Light-Weight Semantic Segmentation (2210.00698v1)

Published 3 Oct 2022 in cs.CV and cs.LG

Abstract: Current NAS-based semantic segmentation methods focus on accuracy improvements rather than light-weight design. In this paper, we proposed a two-stage framework to design our NAS-based RSPNet model for light-weight semantic segmentation. The first architecture search determines the inner cell structure, and the second architecture search considers exponentially growing paths to finalize the outer structure of the network. It was shown in the literature that the fusion of high- and low-resolution feature maps produces stronger representations. To find the expected macro structure without manual design, we adopt a new path-attention mechanism to efficiently search for suitable paths to fuse useful information for better segmentation. Our search for repeatable micro-structures from cells leads to a superior network architecture in semantic segmentation. In addition, we propose an RSP (recursive Stage Partial) architecture to search a light-weight design for NAS-based semantic segmentation. The proposed architecture is very efficient, simple, and effective that both the macro- and micro- structure searches can be completed in five days of computation on two V100 GPUs. The light-weight NAS architecture with only 1/4 parameter size of SoTA architectures can achieve SoTA performance on semantic segmentation on the Cityscapes dataset without using any backbones.

Citations (1)

Summary

We haven't generated a summary for this paper yet.