Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Slimmable Networks for Contrastive Self-supervised Learning (2209.15525v3)

Published 30 Sep 2022 in cs.CV

Abstract: Self-supervised learning makes significant progress in pre-training large models, but struggles with small models. Mainstream solutions to this problem rely mainly on knowledge distillation, which involves a two-stage procedure: first training a large teacher model and then distilling it to improve the generalization ability of smaller ones. In this work, we introduce another one-stage solution to obtain pre-trained small models without the need for extra teachers, namely, slimmable networks for contrastive self-supervised learning (SlimCLR). A slimmable network consists of a full network and several weight-sharing sub-networks, which can be pre-trained once to obtain various networks, including small ones with low computation costs. However, interference between weight-sharing networks leads to severe performance degradation in self-supervised cases, as evidenced by gradient magnitude imbalance and gradient direction divergence. The former indicates that a small proportion of parameters produce dominant gradients during backpropagation, while the main parameters may not be fully optimized. The latter shows that the gradient direction is disordered, and the optimization process is unstable. To address these issues, we introduce three techniques to make the main parameters produce dominant gradients and sub-networks have consistent outputs. These techniques include slow start training of sub-networks, online distillation, and loss re-weighting according to model sizes. Furthermore, theoretical results are presented to demonstrate that a single slimmable linear layer is sub-optimal during linear evaluation. Thus a switchable linear probe layer is applied during linear evaluation. We instantiate SlimCLR with typical contrastive learning frameworks and achieve better performance than previous arts with fewer parameters and FLOPs. The code is at https://github.com/mzhaoshuai/SlimCLR.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shuai Zhao (116 papers)
  2. Xiaohan Wang (91 papers)
  3. Linchao Zhu (78 papers)
  4. Yi Yang (856 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.