Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging variational autoencoders for multiple data imputation (2209.15321v1)

Published 30 Sep 2022 in stat.ML and cs.LG

Abstract: Missing data persists as a major barrier to data analysis across numerous applications. Recently, deep generative models have been used for imputation of missing data, motivated by their ability to capture highly non-linear and complex relationships in the data. In this work, we investigate the ability of deep models, namely variational autoencoders (VAEs), to account for uncertainty in missing data through multiple imputation strategies. We find that VAEs provide poor empirical coverage of missing data, with underestimation and overconfident imputations, particularly for more extreme missing data values. To overcome this, we employ $\beta$-VAEs, which viewed from a generalized Bayes framework, provide robustness to model misspecification. Assigning a good value of $\beta$ is critical for uncertainty calibration and we demonstrate how this can be achieved using cross-validation. In downstream tasks, we show how multiple imputation with $\beta$-VAEs can avoid false discoveries that arise as artefacts of imputation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.