Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A refined first-order expansion formula in Rn: Application to interpolation and finite element error estimates (2209.15286v1)

Published 30 Sep 2022 in math.NA and cs.NA

Abstract: The aim of this paper is to derive a refined first-order expansion formula in Rn, the goal being to get an optimal reduced remainder, compared to the one obtained by usual Taylor's formula. For a given function, the formula we derived is obtained by introducing a linear combination of the first derivatives, computed at $n+1$ equally spaced points. We show how this formula can be applied to two important applications: the interpolation error and the finite elements error estimates. In both cases, we illustrate under which conditions a significant improvement of the errors can be obtained, namely how the use of the refined expansion can reduce the upper bound of error estimates.

Citations (1)

Summary

We haven't generated a summary for this paper yet.