Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Integral Equations (2209.15190v5)

Published 30 Sep 2022 in cs.LG, cs.NA, math.DS, math.NA, and physics.comp-ph

Abstract: Nonlinear operators with long distance spatiotemporal dependencies are fundamental in modeling complex systems across sciences, yet learning these nonlocal operators remains challenging in machine learning. Integral equations (IEs), which model such nonlocal systems, have wide ranging applications in physics, chemistry, biology, and engineering. We introduce Neural Integral Equations (NIE), a method for learning unknown integral operators from data using an IE solver. To improve scalability and model capacity, we also present Attentional Neural Integral Equations (ANIE), which replaces the integral with self-attention. Both models are grounded in the theory of second kind integral equations, where the indeterminate appears both inside and outside the integral operator. We provide theoretical analysis showing how self-attention can approximate integral operators under mild regularity assumptions, further deepening previously reported connections between transformers and integration, and deriving corresponding approximation results for integral operators. Through numerical benchmarks on synthetic and real world data, including Lotka-Volterra, Navier-Stokes, and Burgers' equations, as well as brain dynamics and integral equations, we showcase the models' capabilities and their ability to derive interpretable dynamics embeddings. Our experiments demonstrate that ANIE outperforms existing methods, especially for longer time intervals and higher dimensional problems. Our work addresses a critical gap in machine learning for nonlocal operators and offers a powerful tool for studying unknown complex systems with long range dependencies.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub