Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable-Based Calibration for Machine Learning Classifiers (2209.15154v3)

Published 30 Sep 2022 in cs.LG

Abstract: The deployment of machine learning classifiers in high-stakes domains requires well-calibrated confidence scores for model predictions. In this paper we introduce the notion of variable-based calibration to characterize calibration properties of a model with respect to a variable of interest, generalizing traditional score-based metrics such as expected calibration error (ECE). In particular, we find that models with near-perfect ECE can exhibit significant miscalibration as a function of features of the data. We demonstrate this phenomenon both theoretically and in practice on multiple well-known datasets, and show that it can persist after the application of existing calibration methods. To mitigate this issue, we propose strategies for detection, visualization, and quantification of variable-based calibration error. We then examine the limitations of current score-based calibration methods and explore potential modifications. Finally, we discuss the implications of these findings, emphasizing that an understanding of calibration beyond simple aggregate measures is crucial for endeavors such as fairness and model interpretability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Markelle Kelly (6 papers)
  2. Padhraic Smyth (52 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.