Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physical Human-Robot Interaction Control of an Upper Limb Exoskeleton with a Decentralized Neuro-Adaptive Control Scheme (2209.14823v3)

Published 29 Sep 2022 in cs.RO

Abstract: Within the concept of physical human-robot interaction (pHRI), the most important criterion is the safety of the human operator interacting with a high degree of freedom (DoF) robot. Therefore, a robust control scheme is in high demand to establish safe pHRI and stabilize nonlinear, high DoF systems. In this paper, an adaptive decentralized control strategy is designed to accomplish the abovementioned objectives. To do so, a human upper limb model and an exoskeleton model are decentralized and augmented at the subsystem level to enable a decentralized control action design. Moreover, human exogenous force (HEF) that can resist exoskeleton motion is estimated using radial basis function neural networks (RBFNNs). Estimating both human upper limb and robot rigid body parameters, along with HEF estimation, makes the controller adaptable to different operators, ensuring their physical safety. The barrier Lyapunov function (BLF) is employed to guarantee that the robot can operate in a safe workspace while ensuring stability by adjusting the control law. Unknown actuator uncertainty and constraints are also considered in this study to ensure a smooth and safe pHRI. Then, the asymptotic stability of the whole system is established by means of the virtual stability concept and virtual power flows (VPFs) under the proposed robust controller. The experimental results are presented and compared to proportional-derivative (PD) and proportional-integral-derivative (PID) controllers. To show the robustness of the designed controller and its good performance, experiments are performed at different velocities, with different human users, and in the presence of unknown disturbances. The proposed controller showed perfect performance in controlling the robot, whereas PD and PID controllers could not even ensure stable motion in the wrist joints of the robot.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. H. Kazerooni and S. Mahoney, “Dynamics and control of robotic systems worn by humans,” 1991.
  2. J. Rebelo, T. Sednaoui, E. B. Den Exter, T. Krueger, and A. Schiele, “Bilateral robot teleoperation: A wearable arm exoskeleton featuring an intuitive user interface,” IEEE Robotics & Automation Magazine, vol. 21, no. 4, pp. 62–69, 2014.
  3. S. Haddadin and E. Croft, “Physical human–robot interaction,” Springer handbook of robotics, pp. 1835–1874, 2016.
  4. A. Pervez and J. Ryu, “Safe physical human robot interaction-past, present and future,” Journal of Mechanical Science and Technology, vol. 22, pp. 469–483, 2008.
  5. G.-W. Zhang, P. Yang, J. Wang, J.-J. Sun, and Y. Zhang, “Integrated observer-based fixed-time control with backstepping method for exoskeleton robot,” International Journal of Automation and Computing, vol. 17, no. 1, pp. 71–82, 2020.
  6. M. Sharifi, V. Azimi, V. K. Mushahwar, and M. Tavakoli, “Impedance learning-based adaptive control for human–robot interaction,” IEEE Transactions on Control Systems Technology, vol. 30, no. 4, pp. 1345–1358, 2021.
  7. Z. Li, B. Huang, Z. Ye, M. Deng, and C. Yang, “Physical human–robot interaction of a robotic exoskeleton by admittance control,” IEEE Transactions on Industrial Electronics, vol. 65, no. 12, pp. 9614–9624, 2018.
  8. B. Brahmi, M. Saad, C. O. Luna, P. S. Archambault, and M. H. Rahman, “Passive and active rehabilitation control of human upper-limb exoskeleton robot with dynamic uncertainties,” Robotica, vol. 36, no. 11, pp. 1757–1779, 2018.
  9. Z. Li, C.-Y. Su, L. Wang, Z. Chen, and T. Chai, “Nonlinear disturbance observer-based control design for a robotic exoskeleton incorporating fuzzy approximation,” IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5763–5775, 2015.
  10. B. Brahmi, M. Saad, C. Ochoa-Luna, M. H. Rahman, and A. Brahmi, “Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 2, pp. 575–585, 2018.
  11. Q. Wu, B. Chen, and H. Wu, “Rbfn-based adaptive backstepping sliding mode control of an upper-limb exoskeleton with dynamic uncertainties,” IEEE Access, vol. 7, pp. 134 635–134 646, 2019.
  12. B. Brahmi, M. Saad, A. Brahmi, C. O. Luna, and M. H. Rahman, “Compliant control for wearable exoskeleton robot based on human inverse kinematics,” International Journal of Advanced Robotic Systems, vol. 15, no. 6, p. 1729881418812133, 2018.
  13. B. Brahmi, M. Saad, M. H. Rahman, and A. Brahmi, “Adaptive force and position control based on quasi-time delay estimation of exoskeleton robot for rehabilitation,” IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2152–2163, 2019.
  14. P. P. Yip and J. K. Hedrick, “Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems,” International Journal of Control, vol. 71, no. 5, pp. 959–979, 1998.
  15. J. Mattila, J. Koivumäki, D. G. Caldwell, and C. Semini, “A survey on control of hydraulic robotic manipulators with projection to future trends,” iEeE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 669–680, 2017.
  16. J. Zhou, C. Wen, and Y. Zhang, “Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 504–511, 2006.
  17. W. Sun, Z. Zhao, and H. Gao, “Saturated adaptive robust control for active suspension systems,” IEEE Transactions on industrial electronics, vol. 60, no. 9, pp. 3889–3896, 2012.
  18. Z. Liu, F. Wang, and Y. Zhang, “Adaptive visual tracking control for manipulator with actuator fuzzy dead-zone constraint and unmodeled dynamic,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 10, pp. 1301–1312, 2015.
  19. Z. Li, Z. Huang, W. He, and C.-Y. Su, “Adaptive impedance control for an upper limb robotic exoskeleton using biological signals,” IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1664–1674, 2016.
  20. Y. Yu, J. Guo, C. K. Ahn, and Z. Xiang, “Neural adaptive distributed formation control of nonlinear multi-uavs with unmodeled dynamics,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  21. Y. Liu and X.-Y. Li, “Decentralized robust adaptive control of nonlinear systems with unmodeled dynamics,” IEEE Transactions on Automatic control, vol. 47, no. 5, pp. 848–856, 2002.
  22. K. Haninger and D. Surdilovic, “Identification of human dynamics in user-led physical human robot environment interaction,” in 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN).   IEEE, 2018, pp. 509–514.
  23. P. Malysz and S. Sirouspour, “A kinematic control framework for single-slave asymmetric teleoperation systems,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 901–917, 2011.
  24. S. Lampinen, J. Koivumäki, W.-H. Zhu, and J. Mattila, “Force-sensor-less bilateral teleoperation control of dissimilar master–slave system with arbitrary scaling,” IEEE Transactions on Control Systems Technology, vol. 30, no. 3, pp. 1037–1051, 2021.
  25. W. He, Y. Chen, and Z. Yin, “Adaptive neural network control of an uncertain robot with full-state constraints,” IEEE transactions on cybernetics, vol. 46, no. 3, pp. 620–629, 2015.
  26. R. Rout, R. Cui, and Z. Han, “Modified line-of-sight guidance law with adaptive neural network control of underactuated marine vehicles with state and input constraints,” IEEE transactions on control systems technology, vol. 28, no. 5, pp. 1902–1914, 2020.
  27. X. Wu, Z. Li, Z. Kan, and H. Gao, “Reference trajectory reshaping optimization and control of robotic exoskeletons for human–robot co-manipulation,” IEEE transactions on cybernetics, vol. 50, no. 8, pp. 3740–3751, 2019.
  28. P. Garrec, “Design of the arm exoskeleton able achieving torque control using ball screw and cable mechanism,” in Wearable Robotics.   Elsevier, 2020, pp. 45–66.
  29. J. Koivumäki and J. Mattila, “Stability-guaranteed force-sensorless contact force/motion control of heavy-duty hydraulic manipulators,” IEEE Transactions on Robotics, vol. 31, no. 4, pp. 918–935, 2015.
  30. W.-H. Zhu and S. E. Salcudean, “Stability guaranteed teleoperation: an adaptive motion/force control approach,” IEEE transactions on automatic control, vol. 45, no. 11, pp. 1951–1969, 2000.
  31. M. Hejrati and J. Mattila, “Decentralized nonlinear control of redundant upper limb exoskeleton with natural adaptation law,” in 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids).   IEEE, 2022, pp. 269–276.
  32. C. O. Luna, M. H. Rahman, M. Saad, P. Archambault, and W.-H. Zhu, “Virtual decomposition control of an exoskeleton robot arm,” Robotica, vol. 34, no. 7, pp. 1587–1609, 2016.
  33. M. Chen, S. S. Ge, and B. V. E. How, “Robust adaptive neural network control for a class of uncertain mimo nonlinear systems with input nonlinearities,” IEEE Transactions on Neural Networks, vol. 21, no. 5, pp. 796–812, 2010.
  34. K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier lyapunov functions for the control of output-constrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, 2009.
  35. T. Lee, J. Kwon, and F. C. Park, “A natural adaptive control law for robot manipulators,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 1–9.
  36. Y. Ren, Z. Zhao, C. Zhang, Q. Yang, and K.-S. Hong, “Adaptive neural-network boundary control for a flexible manipulator with input constraints and model uncertainties,” IEEE Transactions on Cybernetics, vol. 51, no. 10, pp. 4796–4807, 2020.
  37. B. Hannaford and J.-H. Ryu, “Time-domain passivity control of haptic interfaces,” IEEE transactions on Robotics and Automation, vol. 18, no. 1, pp. 1–10, 2002.
  38. M. Hejrati and J. Mattila, “Nonlinear subsystem-based adaptive impedance control of physical human-robot-environment interaction in contact-rich tasks,” IEEE Robotics and Automation Letters, vol. 8, no. 10, pp. 6083–6090, 2023.
  39. W.-H. Zhu and J.-C. Piedboeuf, “Adaptive output force tracking control of hydraulic cylinders with applications to robot manipulators,” 2005.
Citations (3)

Summary

We haven't generated a summary for this paper yet.