Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal Proxy Models for Concept-Based Model Explanations (2209.14279v1)

Published 28 Sep 2022 in cs.CL

Abstract: Explainability methods for NLP systems encounter a version of the fundamental problem of causal inference: for a given ground-truth input text, we never truly observe the counterfactual texts necessary for isolating the causal effects of model representations on outputs. In response, many explainability methods make no use of counterfactual texts, assuming they will be unavailable. In this paper, we show that robust causal explainability methods can be created using approximate counterfactuals, which can be written by humans to approximate a specific counterfactual or simply sampled using metadata-guided heuristics. The core of our proposal is the Causal Proxy Model (CPM). A CPM explains a black-box model $\mathcal{N}$ because it is trained to have the same actual input/output behavior as $\mathcal{N}$ while creating neural representations that can be intervened upon to simulate the counterfactual input/output behavior of $\mathcal{N}$. Furthermore, we show that the best CPM for $\mathcal{N}$ performs comparably to $\mathcal{N}$ in making factual predictions, which means that the CPM can simply replace $\mathcal{N}$, leading to more explainable deployed models. Our code is available at https://github.com/frankaging/Causal-Proxy-Model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zhengxuan Wu (37 papers)
  2. Karel D'Oosterlinck (11 papers)
  3. Atticus Geiger (35 papers)
  4. Amir Zur (4 papers)
  5. Christopher Potts (113 papers)
Citations (34)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com