Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Momentum Gradient Descent Federated Learning with Local Differential Privacy (2209.14086v2)

Published 28 Sep 2022 in cs.LG

Abstract: Nowadays, the development of information technology is growing rapidly. In the big data era, the privacy of personal information has been more pronounced. The major challenge is to find a way to guarantee that sensitive personal information is not disclosed while data is published and analyzed. Centralized differential privacy is established on the assumption of a trusted third-party data curator. However, this assumption is not always true in reality. As a new privacy preservation model, local differential privacy has relatively strong privacy guarantees. Although federated learning has relatively been a privacy-preserving approach for distributed learning, it still introduces various privacy concerns. To avoid privacy threats and reduce communication costs, in this article, we propose integrating federated learning and local differential privacy with momentum gradient descent to improve the performance of machine learning models.

Summary

We haven't generated a summary for this paper yet.