Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reasoning over Multi-view Knowledge Graphs (2209.13702v1)

Published 27 Sep 2022 in cs.AI and cs.LG

Abstract: Recently, knowledge representation learning (KRL) is emerging as the state-of-the-art approach to process queries over knowledge graphs (KGs), wherein KG entities and the query are embedded into a latent space such that entities that answer the query are embedded close to the query. Yet, despite the intensive research on KRL, most existing studies either focus on homogenous KGs or assume KG completion tasks (i.e., inference of missing facts), while answering complex logical queries over KGs with multiple aspects (multi-view KGs) remains an open challenge. To bridge this gap, in this paper, we present ROMA, a novel KRL framework for answering logical queries over multi-view KGs. Compared with the prior work, ROMA departs in major aspects. (i) It models a multi-view KG as a set of overlaying sub-KGs, each corresponding to one view, which subsumes many types of KGs studied in the literature (e.g., temporal KGs). (ii) It supports complex logical queries with varying relation and view constraints (e.g., with complex topology and/or from multiple views); (iii) It scales up to KGs of large sizes (e.g., millions of facts) and fine-granular views (e.g., dozens of views); (iv) It generalizes to query structures and KG views that are unobserved during training. Extensive empirical evaluation on real-world KGs shows that \system significantly outperforms alternative methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.