Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Coupling Effect: Experimental Validation of the Fusion of Fossen and Featherstone to Simulate UVMS Dynamics in Julia (2209.13577v2)

Published 27 Sep 2022 in cs.RO

Abstract: As Underwater Vehicle Manipulator Systems (UVMSs) have gotten smaller and lighter over the past years, it is becoming increasingly important to consider the coupling forces between the manipulator and the vehicle when planning and controlling the system. A number of different models have been proposed, each using different rigid body dynamics or hydrodynamics algorithms, or purporting to consider different dynamic effects on the system, but most go without experimental validation of the full model, and in particular, of the coupling effect between the two systems. In this work, we return to a model combining Featherstone's rigid body dynamics algorithms with Fossen's equations for underwater dynamics by using the Julia package RigidBodyDynamics.jl. We compare the simulation's output with experimental results from pool trials with a ten degree of freedom UVMS that integrates a Reach Alpha manipulator with a BlueROV2. We validate the model's usefulness and identify its strengths and weaknesses in studying the dynamic coupling effect.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. A. B. Bugnot, M. Mayer-Pinto, L. Airoldi, E. C. Heery, E. L. Johnston, L. P. Critchley, E. M. Strain, R. L. Morris, L. H. Loke, M. J. Bishop, E. V. Sheehan, R. A. Coleman, and K. A. Dafforn, “Current and projected global extent of marine built structures,” Nature Sustainability 2020 4:1, vol. 4, pp. 33–41, 8 2020.
  2. P. D. Lillo, D. D. Vito, and G. Antonelli, “Set-based inverse kinematics control of an uvms within the dexrov project,” OCEANS 2018 MTS/IEEE Charleston, 1 2019.
  3. H. Schempf and D. R. Yoerger, “Coordinated vehicle/manipulation design and control issues for underwater telemanipulation,” IFAC Proceedings Volumes, vol. 25, pp. 259–267, 4 1992.
  4. H. H. Wang, S. M. Rock, and M. J. Lee, “Experiments in automatic retrieval of underwater objects with an auv,” Oceans Conference Record (IEEE), vol. 2, pp. 366–373, 1995.
  5. V. Rigaud, E. Coste-Maniere, M. J. Aldon, P. Probert, M. Perrier, P. Rives, D. Simon, D. Lane, J. Kiener, A. Casals, J. Amat, P. Dauchez, and M. Chantler, “Union: Underwater intelligent operation and navigation,” IEEE Robotics and Automation Magazine, vol. 5, pp. 25–34, 3 1998.
  6. C. Barbălată, M. W. Dunnigan, and Y. Pétillot, “Dynamic coupling and control issues for a lightweight underwater vehicle manipulator system,” in 2014 Oceans-St. John’s.   IEEE, 2014, pp. 1–6.
  7. C. Barbălată, M. W. Dunnigan, and Y. Petillot, “Coupled and decoupled force/motion controllers for an underwater vehicle-manipulator system,” Journal of Marine Science and Engineering, vol. 6, pp. 1–23, 2018.
  8. G. Brantner and O. Khatib, “Controlling ocean one: Human–robot collaboration for deep-sea manipulation,” Journal of Field Robotics, 2020.
  9. G. Marani, S. K. Choi, and J. Yuh, “Underwater autonomous manipulation for intervention missions auvs,” Ocean Engineering, vol. 36, pp. 15–23, 1 2009.
  10. P. J. Sanz, P. Ridao, G. Oliver, G. Casalino, Y. Petillot, C. Silvestre, C. Melchiorri, and A. Turetta, “Trident an european project targeted to increase the autonomy levels for underwater intervention missions,” in 2013 OCEANS - San Diego, 2013, pp. 1–10.
  11. E. Simetti and G. Casalino, “Whole body control of a dual arm underwater vehicle manipulator system,” Annual Reviews in Control, vol. 40, pp. 191–200, 1 2015.
  12. “Sliding mode impedance control for contact intervention of an i-auv: Simulation and experimental validation,” Ocean Engineering, vol. 196, p. 106855, 1 2020.
  13. P. D. Lillo, E. Simetti, F. Wanderlingh, G. Casalino, and G. Antonelli, “Underwater intervention with remote supervision via satellite communication: Developed control architecture and experimental results within the dexrov project,” IEEE Transactions on Control Systems Technology, vol. 29, pp. 108–123, 1 2021.
  14. X. Xiong, X. Xiang, Z. Wang, and S. Yang, “On dynamic coupling effects of underwater vehicle-dual-manipulator system,” Ocean engineering, vol. 258, pp. 111 699–, 2022.
  15. L. Huang, Y. Wei, T. Wang, and T. Lu, “Position-level dynamic coupling analysis of dual-arm underwater vehicle manipulator system,” in 2023 IEEE International Conference on Mechatronics and Automation (ICMA).   IEEE, 2023, p. 513–518.
  16. H. S. Umer, M. Karkoub, D. Kerimoglu, and W. Hong-Du, “Dynamic analysis of the uvms: Effect of disturbances, coupling, and joint-flexibility on end-effector positioning,” Robotica, vol. 39, no. 11, pp. 1952–1980, 11 2021.
  17. J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A review of physics simulators for robotic applications,” IEEE Access, vol. 9, p. 51416–51431, 2021.
  18. M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and T. Rauschenbach, “Uuv simulator: A gazebo-based package for underwater intervention and multi-robot simulation,” in OCEANS 2016 MTS/IEEE Monterey, 2016, pp. 1–8.
  19. M. Prats, J. Pérez, J. J. Fernández, and P. J. Sanz, “An open source tool for simulation and supervision of underwater intervention missions,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 2577–2582.
  20. E. Potokar, S. Ashford, M. Kaess, and J. G. Mangelson, “Holoocean: An underwater robotics simulator,” in 2022 International Conference on Robotics and Automation (ICRA), May 2022, p. 3040–3046.
  21. P. Cieslak, “Stonefish: An advanced open-source simulation tool designed for marine robotics, with a ros interface,” in OCEANS 2019 - Marseille.   IEEE, 2019, p. 1–6.
  22. E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine learning,” http://pybullet.org, 2016–2021.
  23. Reach Robotics. Reach alpha. [Online]. Available: https://reachrobotics.com/products/manipulators/reach-alpha/
  24. J. González-García, N. A. Narcizo-Nuci, L. G. García-Valdovinos, T. Salgado-Jiménez, A. Gómez-Espinosa, E. Cuan-Urquizo, and J. A. E. Cabello, “Model-free high order sliding mode control with finite-time tracking for unmanned underwater vehicles,” Applied Sciences, vol. 11, no. 4, p. 1836, Feb 2021.
  25. “Design and use paradigms for gazebo, an open-source multi-robot simulator,” in 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3.   IEEE, 2004, pp. 2149–2154.
  26. T. Koolen and contributors, “Rigidbodydynamics.jl,” 2016. [Online]. Available: https://github.com/JuliaRobotics/RigidBodyDynamics.jl
  27. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.