Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Activation Learning by Local Competitions (2209.13400v2)

Published 26 Sep 2022 in cs.NE, cs.AI, cs.CV, and cs.LG

Abstract: Despite its great success, backpropagation has certain limitations that necessitate the investigation of new learning methods. In this study, we present a biologically plausible local learning rule that improves upon Hebb's well-known proposal and discovers unsupervised features by local competitions among neurons. This simple learning rule enables the creation of a forward learning paradigm called activation learning, in which the output activation (sum of the squared output) of the neural network estimates the likelihood of the input patterns, or "learn more, activate more" in simpler terms. For classification on a few small classical datasets, activation learning performs comparably to backpropagation using a fully connected network, and outperforms backpropagation when there are fewer training samples or unpredictable disturbances. Additionally, the same trained network can be used for a variety of tasks, including image generation and completion. Activation learning also achieves state-of-the-art performance on several real-world datasets for anomaly detection. This new learning paradigm, which has the potential to unify supervised, unsupervised, and semi-supervised learning and is reasonably more resistant to adversarial attacks, deserves in-depth investigation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.