Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Embeddings and Inverse Embeddings of Input Design for Regularized System Identification (2209.13152v1)

Published 27 Sep 2022 in eess.SY and cs.SY

Abstract: Input design is an important problem for system identification and has been well studied for the classical system identification, i.e., the maximum likelihood/prediction error method. For the emerging regularized system identification, the study on input design has just started, and it is often formulated as a non-convex optimization problem that minimizes a scalar measure of the Bayesian mean squared error matrix subject to certain constraints, and the state-of-art method is the so-called quadratic mapping and inverse embedding (QMIE) method, where a time domain inverse embedding (TDIE) is proposed to find the inverse of the quadratic mapping. In this paper, we report some new results on the embeddings/inverse embeddings of the QMIE method. Firstly, we present a general result on the frequency domain inverse embedding (FDIE) that is to find the inverse of the quadratic mapping described by the discrete-time Fourier transform. Then we show the relation between the TDIE and the FDIE from a graph signal processing perspective. Finally, motivated by this perspective, we further propose a graph induced embedding and its inverse, which include the previously introduced embeddings as special cases. This deepens the understanding of input design from a new viewpoint beyond the real domain and the frequency domain viewpoints.

Citations (5)

Summary

We haven't generated a summary for this paper yet.