Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mitigating Attacks on Artificial Intelligence-based Spectrum Sensing for Cellular Network Signals (2209.13007v1)

Published 27 Sep 2022 in cs.NI, cs.AI, and cs.CR

Abstract: Cellular networks (LTE, 5G, and beyond) are dramatically growing with high demand from consumers and more promising than the other wireless networks with advanced telecommunication technologies. The main goal of these networks is to connect billions of devices, systems, and users with high-speed data transmission, high cell capacity, and low latency, as well as to support a wide range of new applications, such as virtual reality, metaverse, telehealth, online education, autonomous and flying vehicles, advanced manufacturing, and many more. To achieve these goals, spectrum sensing has been paid more attention, along with new approaches using AI methods for spectrum management in cellular networks. This paper provides a vulnerability analysis of spectrum sensing approaches using AI-based semantic segmentation models for identifying cellular network signals under adversarial attacks with and without defensive distillation methods. The results showed that mitigation methods can significantly reduce the vulnerabilities of AI-based spectrum sensing models against adversarial attacks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.