Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Imputation Methods for Missing Multilevel Ordinal Outcomes (2209.13001v1)

Published 26 Sep 2022 in stat.ME and stat.AP

Abstract: Multiple imputation (MI) is an established technique to handle missing data in observational studies. Joint modeling (JM) and fully conditional specification (FCS) are commonly used methods for imputing multilevel clustered data. However, MI approaches for ordinal clustered outcome variables have not been well studied, especially when there is informative cluster size (ICS). The purpose of this study is to describe different imputation and analysis strategies for the multilevel ordinal outcome when ICS exists. We conducted comprehensive Monte Carlo simulation studies to compare five different methods: complete case analysis (CCA), FCS, FCS+CS (include cluster size (CS) when performing the imputation), JM, and JM+CS under different scenarios. We evaluated their performances using an proportional odds logistic regression model estimated with cluster weighted generalized estimating equations (CWGEE). The simulation results show that including cluster size in imputation can significantly improve imputation accuracy when ICS exists. FCS provides more accurate and robust estimation than JM, followed by CCA for multilevel ordinal outcomes. We further applied those methods to a real dental study.

Summary

We haven't generated a summary for this paper yet.