Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of score-based generative modeling for general data distributions (2209.12381v2)

Published 26 Sep 2022 in cs.LG, math.PR, math.ST, stat.ML, and stat.TH

Abstract: Score-based generative modeling (SGM) has grown to be a hugely successful method for learning to generate samples from complex data distributions such as that of images and audio. It is based on evolving an SDE that transforms white noise into a sample from the learned distribution, using estimates of the score function, or gradient log-pdf. Previous convergence analyses for these methods have suffered either from strong assumptions on the data distribution or exponential dependencies, and hence fail to give efficient guarantees for the multimodal and non-smooth distributions that arise in practice and for which good empirical performance is observed. We consider a popular kind of SGM -- denoising diffusion models -- and give polynomial convergence guarantees for general data distributions, with no assumptions related to functional inequalities or smoothness. Assuming $L2$-accurate score estimates, we obtain Wasserstein distance guarantees for any distribution of bounded support or sufficiently decaying tails, as well as TV guarantees for distributions with further smoothness assumptions.

Citations (109)

Summary

We haven't generated a summary for this paper yet.