Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Creating Compact Regions of Social Determinants of Health (2209.11836v1)

Published 23 Sep 2022 in cs.LG

Abstract: Regionalization is the act of breaking a dataset into contiguous homogeneous regions that are heterogeneous from each other. Many different algorithms exist for performing regionalization; however, using these algorithms on large real world data sets have only become feasible in terms of compute power in recent years. Very few studies have been done comparing different regionalization methods, and those that do lack analysis in memory, scalability, geographic metrics, and large-scale real-world applications. This study compares state-of-the-art regionalization methods, namely, Agglomerative Clustering, SKATER, REDCAP, AZP, and Max-P-Regions using real world social determinant of health (SDOH) data. The scale of real world SDOH data, up to 1 million data points in this study, not only compares the algorithms over different data sets but provides a stress test for each individual regionalization algorithm, most of which have never been run on such scales previously. We use several new geographic metrics to compare algorithms as well as perform a comparative memory analysis. The prevailing regionalization method is then compared with unconstrained K-Means clustering on their ability to separate real health data in Virginia and Washington DC.

Summary

We haven't generated a summary for this paper yet.