Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unified Algorithms for RL with Decision-Estimation Coefficients: PAC, Reward-Free, Preference-Based Learning, and Beyond (2209.11745v4)

Published 23 Sep 2022 in cs.LG, cs.AI, math.ST, stat.ML, and stat.TH

Abstract: Modern Reinforcement Learning (RL) is more than just learning the optimal policy; Alternative learning goals such as exploring the environment, estimating the underlying model, and learning from preference feedback are all of practical importance. While provably sample-efficient algorithms for each specific goal have been proposed, these algorithms often depend strongly on the particular learning goal and thus admit different structures correspondingly. It is an urging open question whether these learning goals can rather be tackled by a single unified algorithm. We make progress on this question by developing a unified algorithm framework for a large class of learning goals, building on the Decision-Estimation Coefficient (DEC) framework. Our framework handles many learning goals such as no-regret RL, PAC RL, reward-free learning, model estimation, and preference-based learning, all by simply instantiating the same generic complexity measure called "Generalized DEC", and a corresponding generic algorithm. The generalized DEC also yields a sample complexity lower bound for each specific learning goal. As applications, we propose "decouplable representation" as a natural sufficient condition for bounding generalized DECs, and use it to obtain many new sample-efficient results (and recover existing results) for a wide range of learning goals and problem classes as direct corollaries. Finally, as a connection, we re-analyze two existing optimistic model-based algorithms based on Posterior Sampling and Maximum Likelihood Estimation, showing that they enjoy sample complexity bounds under similar structural conditions as the DEC.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets