Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous Mixtures of Tractable Probabilistic Models (2209.10584v3)

Published 21 Sep 2022 in cs.LG, cs.AI, and stat.ML

Abstract: Probabilistic models based on continuous latent spaces, such as variational autoencoders, can be understood as uncountable mixture models where components depend continuously on the latent code. They have proven to be expressive tools for generative and probabilistic modelling, but are at odds with tractable probabilistic inference, that is, computing marginals and conditionals of the represented probability distribution. Meanwhile, tractable probabilistic models such as probabilistic circuits (PCs) can be understood as hierarchical discrete mixture models, and thus are capable of performing exact inference efficiently but often show subpar performance in comparison to continuous latent-space models. In this paper, we investigate a hybrid approach, namely continuous mixtures of tractable models with a small latent dimension. While these models are analytically intractable, they are well amenable to numerical integration schemes based on a finite set of integration points. With a large enough number of integration points the approximation becomes de-facto exact. Moreover, for a finite set of integration points, the integration method effectively compiles the continuous mixture into a standard PC. In experiments, we show that this simple scheme proves remarkably effective, as PCs learnt this way set new state of the art for tractable models on many standard density estimation benchmarks.

Citations (18)

Summary

We haven't generated a summary for this paper yet.