Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An E-PINN assisted practical uncertainty quantification for inverse problems (2209.10195v1)

Published 21 Sep 2022 in math.NA and cs.NA

Abstract: How to solve inverse problems is the challenge of many engineering and industrial applications. Recently, physics-informed neural networks (PINNs) have emerged as a powerful approach to solve inverse problems efficiently. However, it is difficult for PINNs to quantify the uncertainty of results. Therefore, this study proposed ensemble PINNs (E-PINNs) to handle this issue. The E-PINN uses ensemble statistics of several basic models to provide uncertainty quantifications for the inverse solution based on the PINN framework, and it is employed to solve the inverse problems in which the unknown quantity is propagated through partial differential equations (PDEs), especially the identification of the unknown field (e.g., space function) of a given physical system. Compared with other data-driven approaches, the suggested method is more than straightforward to implement, and also obtains high-quality uncertainty estimates of the quantity of interest (QoI) without significantly increasing the complexity of the algorithm. This work discusses the good properties of ensemble learning in field inversion and uncertainty quantification. The effectiveness of the proposed method is demonstrated through several numerical experiments. To enhance the robustness of models, adversarial training (AT) is applied. Furthermore, an adaptive active sampling (AS) strategy based on the uncertainty estimates from E-PINNs is also proposed to improve the accuracy of material field inversion problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xinchao Jiang (6 papers)
  2. Xin Wanga (2 papers)
  3. Ziming Wena (1 paper)
  4. Enying Li (2 papers)
  5. Hu Wang (79 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.