Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinite time bubble towers in the fractional heat equation with critical exponent (2209.10065v1)

Published 21 Sep 2022 in math.AP

Abstract: In this paper, we consider the fractional heat equation with critical exponent in $\mathbb{R}n$ for $n>6s,s\in(0,1),$ \begin{equation*} u_t=-(-\Delta)su+|u|{\frac{4s}{n-2s}}u,\quad (x,t)\in \mathbb{R}n\times\mathbb{R}. \end{equation*} We construct a bubble tower type solution both for the forward and backward problem by establishing the existence of the sign-changing solution with multiple blow-up at a single point with the form \begin{equation*} u(x,t)=(1+o(1))\sum_{j=1}{k}(-1){j-1}\mu_j(t){-\frac{n-2s}{2}}U\left(\frac{x}{\mu_j(t)}\right) \quad\mbox{as}\quad t\to+\infty, \end{equation*} and the positive solution with multiple blow-up at a single point with the form \begin{equation*} u(x,t)=(1+o(1))\sum_{j=1}{k}\mu_j(t){-\frac{n-2s}{2}}U\left(\frac{x}{\mu_j(t)}\right) \quad\mbox{as}\quad t\to-\infty, \end{equation*} respectively. Here $k\ge2$ is a positive integer, $$U(y)=\alpha_{n,s}\left(\frac{1}{1+|y|2}\right){\frac{n-2s}{2}},$$ and \begin{equation*} \mu_j(t)=\beta_j |t|{-\alpha_j}(1+o(1))~\mathrm{as}~t\to\pm\infty, \quad \alpha_j=\frac{1}{2s}\left(\frac{n-2s}{n-6s}\right){j-1}-\frac{1}{2s}, \end{equation*} for some certain positive numbers $\beta_j,j=1,\cdots,k.$

Citations (3)

Summary

We haven't generated a summary for this paper yet.