Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Instance-dependent uniform tail bounds for empirical processes (2209.10053v6)

Published 21 Sep 2022 in math.PR, math.ST, stat.ML, and stat.TH

Abstract: We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial deflation'' step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of thedeflated function class'' in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. Leveraging another less demanding natural seminorm, we also show similar bounds, though with implicit dependence on the sample size, in the more general case where finite exponential moments cannot be assumed. We also provide approximations of the tail bounds in terms of the more prevalent Orlicz norms or their ``incomplete'' versions under suitable moment conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. “Combining PAC-Bayesian and Generic Chaining Bounds” In Journal of Machine Learning Research 8, 2007, pp. 863–889
  2. Stéphane Boucheron, Gábor Lugosi and Pascal Massart “Concentration inequalities: A nonasymptotic theory of independence” Oxford: Oxford University Press, 2013
  3. Olivier Bousquet “A Bennett concentration inequality and its application to suprema of empirical processes” In Comptes Rendus Mathematique 334.6, 2002, pp. 495–500 DOI: https://doi.org/10.1016/S1631-073X(02)02292-6
  4. Clément L. Canonne “A short note on an inequality between KL and TV”, 2023 arXiv:2202.07198 [math.PR]
  5. E. Csáki “The law of the iterated logarithm for normalized empirical distribution function” In Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 38.2 Springer ScienceBusiness Media LLC, 1977, pp. 147–167 DOI: 10.1007/BF00533305
  6. “Large Deviations Techniques and Applications” Springer Berlin Heidelberg, 2010 DOI: 10.1007/978-3-642-03311-7
  7. Sjoerd Dirksen “Tail bounds via generic chaining” In Electronic Journal of Probability 20 The Institute of Mathematical Statisticsthe Bernoulli Society, 2015
  8. X. Fernique “Regularite des trajectoires des fonctions aleatoires Gaussiennes” In Ecole d’Eté de Probabilités de Saint-Flour IV–1974 Springer Berlin Heidelberg, 1975, pp. 1–96 DOI: 10.1007/bfb0080190
  9. “Concentration inequalities and asymptotic results for ratio type empirical processes” In The Annals of Probability 34.3 Institute of Mathematical Statistics, 2006, pp. 1143–1216 DOI: 10.1214/009117906000000070
  10. Evarist Giné, Vladimir Koltchinskii and Jon A. Wellner “Ratio Limit Theorems for Empirical Processes” In Stochastic Inequalities and Applications Birkhäuser Basel, 2003, pp. 249–278 DOI: 10.1007/978-3-0348-8069-5_15
  11. “Rademacher Processes and Bounding the Risk of Function Learning” In High Dimensional Probability II BirkhÀuser Boston, 2000, pp. 443–457 DOI: 10.1007/978-1-4612-1358-1_29
  12. “Multivariate mean estimation with direction-dependent accuracy” In Journal of the European Mathematical Society European Mathematical Society - EMS - Publishing House GmbH, 2023 DOI: 10.4171/jems/1321
  13. David Pollard “Convergence of Stochastic Processes” Springer New York, 1984 DOI: 10.1007/978-1-4612-5254-2
  14. “Information Theory: From Coding to Learning” Cambridge University Press, 2024
  15. Michel Talagrand “Regularity of Gaussian processes” In Acta Mathematica 159.0 International Press of Boston, 1987, pp. 99–149 DOI: 10.1007/bf02392556
  16. Michel Talagrand “Majorizing measures without measures” In The Annals of Probability 29.1 Institute of Mathematical Statistics, 2001 DOI: 10.1214/aop/1008956336
  17. Michel Talagrand “Upper and Lower Bounds for Stochastic Processes” Springer Berlin Heidelberg, 2014
  18. Alexandre B. Tsybakov “Introduction to Nonparametric Estimation” Springer-Verlag GmbH, 2008 URL: https://www.ebook.de/de/product/12470796/alexandre_b_tsybakov_introduction_to_nonparametric_estimation.html
  19. “The Bernstein–Orlicz norm and deviation inequalities” In Probability Theory and Related Fields 157.1-2 Springer ScienceBusiness Media LLC, 2012, pp. 225–250 DOI: 10.1007/s00440-012-0455-y
  20. “Weak Convergence and Empirical Processes” Springer New York, 2012
  21. Ramon Handel “Chaining, interpolation, and convexity” In Journal of the European Mathematical Society 20.10 European Mathematical Society - EMS - Publishing House GmbH, 2018, pp. 2413–2435 DOI: 10.4171/JEMS/815
  22. “On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities” In Theory of Probability & Its Applications 16.2 Society for Industrial & Applied Mathematics (SIAM), 1971, pp. 264–280 DOI: 10.1137/1116025
  23. Vladimir Vapnik “Statistical learning theory” New York: Wiley, 1998
  24. S.R.S. Varadhan “Large Deviations and Applications” Society for IndustrialApplied Mathematics, 1984 DOI: 10.1137/1.9781611970241
  25. Roman Vershynin “High-Dimensional Probability: An Introduction with Applications in Data Science”, Cambridge Series in Statistical and Probabilistic Mathematics Cambridge University Press, 2018
  26. Jon A. Wellner “The Bennett–Orlicz Norm” In Sankhya A 79.2 Springer ScienceBusiness Media LLC, 2017, pp. 355–383 DOI: 10.1007/s13171-017-0108-4
  27. Jon A. Wellner and Galen R. Shorack “Empirical processes with applications to statistics” Society for IndustrialApplied Mathematics, 2009
  28. Bin Yu “Assouad, Fano, and Le Cam” In Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics New York, NY: Springer New York, 1997, pp. 423–435 DOI: 10.1007/978-1-4612-1880-7_29

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)