Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SynthA1c: Towards Clinically Interpretable Patient Representations for Diabetes Risk Stratification (2209.10043v2)

Published 20 Sep 2022 in cs.LG, cs.AI, eess.IV, and q-bio.QM

Abstract: Early diagnosis of Type 2 Diabetes Mellitus (T2DM) is crucial to enable timely therapeutic interventions and lifestyle modifications. As the time available for clinical office visits shortens and medical imaging data become more widely available, patient image data could be used to opportunistically identify patients for additional T2DM diagnostic workup by physicians. We investigated whether image-derived phenotypic data could be leveraged in tabular learning classifier models to predict T2DM risk in an automated fashion to flag high-risk patients without the need for additional blood laboratory measurements. In contrast to traditional binary classifiers, we leverage neural networks and decision tree models to represent patient data as 'SynthA1c' latent variables, which mimic blood hemoglobin A1c empirical lab measurements, that achieve sensitivities as high as 87.6%. To evaluate how SynthA1c models may generalize to other patient populations, we introduce a novel generalizable metric that uses vanilla data augmentation techniques to predict model performance on input out-of-domain covariates. We show that image-derived phenotypes and physical examination data together can accurately predict diabetes risk as a means of opportunistic risk stratification enabled by artificial intelligence and medical imaging. Our code is available at https://github.com/allisonjchae/DMT2RiskAssessment.

Citations (1)

Summary

We haven't generated a summary for this paper yet.