Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On additive MDS codes with linear projections (2209.09767v1)

Published 20 Sep 2022 in cs.IT, math.CO, and math.IT

Abstract: We support some evidence that a long additive MDS code over a finite field must be equivalent to a linear code. More precisely, let $C$ be an $\mathbb F_q$-linear $(n,q{hk},n-k+1)_{qh}$ MDS code over $\mathbb F_{qh}$. If $k=3$, $h \in {2,3}$, $n > \max {q{h-1},h q -1} + 3$, and $C$ has three coordinates from which its projections are equivalent to linear codes, we prove that $C$ itself is equivalent to a linear code. If $k>3$, $n > q+k$, and there are two disjoint subsets of coordinates whose combined size is at most $k-2$ from which the projections of $C$ are equivalent to linear codes, we prove that $C$ is equivalent to a code which is linear over a larger field than $\mathbb F_q$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.