Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a Uniform Causality Model for Industrial Automation (2209.09618v1)

Published 20 Sep 2022 in cs.AI

Abstract: The increasing complexity of Cyber-Physical Systems (CPS) makes industrial automation challenging. Large amounts of data recorded by sensors need to be processed to adequately perform tasks such as diagnosis in case of fault. A promising approach to deal with this complexity is the concept of causality. However, most research on causality has focused on inferring causal relations between parts of an unknown system. Engineering uses causality in a fundamentally different way: complex systems are constructed by combining components with known, controllable behavior. As CPS are constructed by the second approach, most data-based causality models are not suited for industrial automation. To bridge this gap, a Uniform Causality Model for various application areas of industrial automation is proposed, which will allow better communication and better data usage across disciplines. The resulting model describes the behavior of CPS mathematically and, as the model is evaluated on the unique requirements of the application areas, it is shown that the Uniform Causality Model can work as a basis for the application of new approaches in industrial automation that focus on machine learning.

Summary

We haven't generated a summary for this paper yet.