Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$S$-Packing Coloring of Cubic Halin Graphs (2209.09135v2)

Published 19 Sep 2022 in math.CO and cs.DM

Abstract: Given a non-decreasing sequence $S = (s_{1}, s_{2}, \ldots , s_{k})$ of positive integers, an $S$-packing coloring of a graph $G$ is a partition of the vertex set of $G$ into $k$ subsets ${V_{1}, V_{2}, \ldots , V_{k}}$ such that for each $1 \leq i \leq k$, the distance between any two distinct vertices $u$ and $v$ in $V_{i}$ is at least $s_{i} + 1$. In this paper, we study the problem of $S$-packing coloring of cubic Halin graphs, and we prove that every cubic Halin graph is $(1,1,2,3)$-packing colorable. In addition, we prove that such graphs are $(1,2,2,2,2,2)$-packing colorable.

Summary

We haven't generated a summary for this paper yet.