Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Walk-and-Relate: A Random-Walk-based Algorithm for Representation Learning on Sparse Knowledge Graphs (2209.08769v2)

Published 19 Sep 2022 in cs.LG, cs.AI, cs.IR, and cs.SI

Abstract: Knowledge graph (KG) embedding techniques use structured relationships between entities to learn low-dimensional representations of entities and relations. The traditional KG embedding techniques (such as TransE and DistMult) estimate these embeddings via simple models developed over observed KG triplets. These approaches differ in their triplet scoring loss functions. As these models only use the observed triplets to estimate the embeddings, they are prone to suffer through data sparsity that usually occurs in the real-world knowledge graphs, i.e., the lack of enough triplets per entity. To settle this issue, we propose an efficient method to augment the number of triplets to address the problem of data sparsity. We use random walks to create additional triplets, such that the relations carried by these introduced triplets entail the metapath induced by the random walks. We also provide approaches to accurately and efficiently filter out informative metapaths from the possible set of metapaths, induced by the random walks. The proposed approaches are model-agnostic, and the augmented training dataset can be used with any KG embedding approach out of the box. Experimental results obtained on the benchmark datasets show the advantages of the proposed approach.

Summary

We haven't generated a summary for this paper yet.