Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Malicious Source Code Detection Using Transformer (2209.07957v1)

Published 16 Sep 2022 in cs.CR and cs.LG

Abstract: Open source code is considered a common practice in modern software development. However, reusing other code allows bad actors to access a wide developers' community, hence the products that rely on it. Those attacks are categorized as supply chain attacks. Recent years saw a growing number of supply chain attacks that leverage open source during software development, relaying the download and installation procedures, whether automatic or manual. Over the years, many approaches have been invented for detecting vulnerable packages. However, it is uncommon to detect malicious code within packages. Those detection approaches can be broadly categorized as analyzes that use (dynamic) and do not use (static) code execution. Here, we introduce Malicious Source code Detection using Transformers (MSDT) algorithm. MSDT is a novel static analysis based on a deep learning method that detects real-world code injection cases to source code packages. In this study, we used MSDT and a dataset with over 600,000 different functions to embed various functions and applied a clustering algorithm to the resulting vectors, detecting the malicious functions by detecting the outliers. We evaluated MSDT's performance by conducting extensive experiments and demonstrated that our algorithm is capable of detecting functions that were injected with malicious code with precision@k values of up to 0.909.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chen Tsfaty (1 paper)
  2. Michael Fire (37 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.