Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Best Arm Identification with Contextual Information under a Small Gap (2209.07330v4)

Published 15 Sep 2022 in cs.LG, econ.EM, math.ST, stat.ME, stat.ML, and stat.TH

Abstract: We study the best-arm identification (BAI) problem with a fixed budget and contextual (covariate) information. In each round of an adaptive experiment, after observing contextual information, we choose a treatment arm using past observations and current context. Our goal is to identify the best treatment arm, which is a treatment arm with the maximal expected reward marginalized over the contextual distribution, with a minimal probability of misidentification. In this study, we consider a class of nonparametric bandit models that converge to location-shift models when the gaps go to zero. First, we derive lower bounds of the misidentification probability for a certain class of strategies and bandit models (probabilistic models of potential outcomes) under a small-gap regime. A small-gap regime is a situation where gaps of the expected rewards between the best and suboptimal treatment arms go to zero, which corresponds to one of the worst cases in identifying the best treatment arm. We then develop the ``Random Sampling (RS)-Augmented Inverse Probability weighting (AIPW) strategy,'' which is asymptotically optimal in the sense that the probability of misidentification under the strategy matches the lower bound when the budget goes to infinity in the small-gap regime. The RS-AIPW strategy consists of the RS rule tracking a target sample allocation ratio and the recommendation rule using the AIPW estimator.

Citations (1)

Summary

We haven't generated a summary for this paper yet.