Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Talagrand, KKL and Friedgut's theorems and the learnability of quantum Boolean functions (2209.07279v3)

Published 15 Sep 2022 in math.FA, cs.IT, math-ph, math.IT, math.MP, and quant-ph

Abstract: We extend three related results from the analysis of influences of Boolean functions to the quantum setting, namely the KKL Theorem, Friedgut's Junta Theorem and Talagrand's variance inequality for geometric influences. Our results are derived by a joint use of recently studied hypercontractivity and gradient estimates. These generic tools also allow us to derive generalizations of these results in a general von Neumann algebraic setting beyond the case of the quantum hypercube, including examples in infinite dimensions relevant to quantum information theory such as continuous variables quantum systems. Finally, we comment on the implications of our results as regards to noncommutative extensions of isoperimetric type inequalities, quantum circuit complexity lower bounds and the learnability of quantum observables.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (94)
  1. Alp Atı cıand Rocco A. Servedio. Quantum algorithms for learning and testing juntas. Quantum Inf. Process., 6(5):323–348, 2007.
  2. Graph products, Fourier analysis and spectral techniques. Geom. Funct. Anal., 14(5):913–940, 2004.
  3. 50 years of first-passage percolation, volume 68 of University Lecture Series. American Mathematical Society, Providence, RI, 2017.
  4. Tim Austin. On the failure of concentration for the ℓ∞superscriptℓ\ell^{\infty}roman_ℓ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-ball. Israel Journal of Mathematics, 211(1):221–238, 2016.
  5. Ivan Bardet. Estimating the decoherence time using non-commutative functional inequalities. arXiv preprint arXiv:1710.01039, 2017.
  6. Quantum reverse hypercontractivity: its tensorization and application to strong converses. Comm. Math. Phys., 376(2):753–794, 2020.
  7. Salman Beigi. Improved quantum hypercontractivity inequality for the qubit depolarizing channel. J. Math. Phys., 62(12):Paper No. 122201, 14, 2021.
  8. Arthur J. Bernstein. Maximally connected arrays on the n𝑛nitalic_n-cube. SIAM J. Appl. Math., 15:1485–1489, 1967.
  9. Complexity of quantum circuits via sensitivity, magic, and coherence. arXiv preprint arXiv:2204.12051, 2022.
  10. Analysis and geometry of Markov diffusion operators, volume 348 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham, 2014.
  11. S. G. Bobkov and C. Houdré. A converse Gaussian Poincaré-type inequality for convex functions. Statist. Probab. Lett., 44(3):281–290, 1999.
  12. Noise sensitivity of Boolean functions and applications to percolation. Inst. Hautes Études Sci. Publ. Math., (90):5–43, 1999.
  13. First passage percolation has sublinear distance variance. Ann. Probab., 31(4):1970–1978, 2003.
  14. D. Bakry and M. Ledoux. Lévy-Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math., 123(2):259–281, 1996.
  15. C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras and finite-dimensional approximations, volume 88 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
  16. Collective coin flipping, robust voting schemes and minima of Banzhaf values. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), pages 408–416. IEEE, 1985.
  17. Ravi B. Boppana. The average sensitivity of bounded-depth circuits. Inform. Process. Lett., 63(5):257–261, 1997.
  18. J. Bourgain. On the distributions of the Fourier spectrum of Boolean functions. Israel J. Math., 131:269–276, 2002.
  19. Raphaël Bouyrie. An unified approach to the junta theorem for discrete and continuous models. arXiv preprint arXiv:1702.00753, 2017.
  20. On the Fourier spectrum of monotone functions. J. ACM, 43(4):747–770, 1996.
  21. Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab., 19(2):289–336, 2006.
  22. Hypercontractive measures, Talagrand’s inequality, and influences. In Geometric aspects of functional analysis, volume 2050 of Lecture Notes in Math., pages 169–189. Springer, Heidelberg, 2012.
  23. Spectral analysis and Feller property for quantum Ornstein-Uhlenbeck semigroups. Comm. Math. Phys., 210(1):85–105, 2000.
  24. Sourav Chatterjee. Superconcentration and related topics. Springer Monographs in Mathematics. Springer, Cham, 2014.
  25. Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance. J. Funct. Anal., 273(5):1810–1869, 2017.
  26. Testing and learning quantum juntas nearly optimally. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1163–1185. SIAM, Philadelphia, PA, 2023.
  27. Hypercontractivity for a quantum Ornstein-Uhlenbeck semigroup. Probab. Theory Related Fields, 140(3-4):505–522, 2008.
  28. On the Fourier tails of bounded functions over the discrete cube (extended abstract). In STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 437–446. ACM, New York, 2006.
  29. On the Fourier spectrum of functions on Boolean cubes. Math. Ann., 374(1-2):653–680, 2019.
  30. The geometry of quantum computation. Quantum Inf. Comput., 8(10):861–899, 2008.
  31. Limitations of variational quantum algorithms: A quantum optimal transport approach. PRX Quantum, 4:010309, Jan 2023.
  32. Relating relative entropy, optimal transport and Fisher information: a quantum HWI inequality. Ann. Henri Poincaré, 21(7):2115–2150, 2020.
  33. On the hardness of approximating minimum vertex cover. Ann. of Math. (2), 162(1):439–485, 2005.
  34. Ronald de Wolf. A brief introduction to Fourier analysis on the Boolean cube. Theory of Computing, pages 1–20, 2008.
  35. Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature. J. Funct. Anal., 274(11):3056–3089, 2018.
  36. Learning low-degree functions from a logarithmic number of random queries. In STOC ’22—Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 203–207. ACM, New York, [2022] ©2022.
  37. J. Eisert. Entangling power and quantum circuit complexity. Phys. Rev. Lett., 127(2):Paper No. 020501, 5, 2021.
  38. Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc., 124(10):2993–3002, 1996.
  39. Boolean functions whose Fourier transform is concentrated on the first two levels. Adv. in Appl. Math., 29(3):427–437, 2002.
  40. Ehud Friedgut. Boolean functions with low average sensitivity depend on few coordinates. Combinatorica, 18(1):27–35, 1998.
  41. Quantum flows associated to a class of laser master equations. J. Math. Phys, 1(35):1–12, 1994.
  42. Li Gao and Cambyse Rouzé. Ricci curvature of quantum channels on non-commutative transportation metric spaces. arXiv preprint arXiv:2108.10609, 2021.
  43. Noise sensitivity of Boolean functions and percolation, volume 5 of Institute of Mathematical Statistics Textbooks. Cambridge University Press, New York, 2015.
  44. L. H. Harper. Optimal assignments of numbers to vertices. J. Soc. Indust. Appl. Math., 12:131–135, 1964.
  45. Sergiu Hart. A note on the edges of the n𝑛nitalic_n-cube. Discrete Math., 14(2):157–163, 1976.
  46. Learning to predict arbitrary quantum processes. PRX Quantum, 4(4):040337, 2023.
  47. Alexander Holevo. Probabilistic and statistical aspects of quantum theory, volume 1 of Quaderni/Monographs. Edizioni della Normale, Pisa, second edition, 2011.
  48. Johan Hå stad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
  49. Improving constant in end-point Poincaré inequality on Hamming cube. arXiv preprint arXiv:1811.05584, 2018.
  50. Tight bounds on the Fourier growth of bounded functions on the hypercube. arXiv preprint arXiv:2107.06309, 2021.
  51. Hypercontractivity for free products. Ann. Sci. Éc. Norm. Supér. (4), 48(4):861–889, 2015.
  52. Hypercontractivity in group von Neumann algebras. Mem. Amer. Math. Soc., 249(1183):xii+83, 2017.
  53. Noncommutative martingale deviation and Poincaré type inequalities with applications. Probab. Theory Related Fields, 161(3-4):449–507, 2015.
  54. M. G. Karpovsky. Finite orthogonal series in the design of digital devices. Halsted Press [John Wiley & Sons], New York-Toronto; Israel Universities Press, Jerusalem, 1976. Analysis, synthesis and optimization.
  55. The influence of variables on Boolean functions. In [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science, pages 68–80, 1988.
  56. Schwartz operators. Reviews in Mathematical Physics, 28(03):1630001, 2016.
  57. Geometric influences. Ann. Probab., 40(3):1135–1166, 2012.
  58. Nonembeddability theorems via Fourier analysis. Math. Ann., 334(4):821–852, 2006.
  59. Hideki Kosaki. Applications of the complex interpolation method to a von Neumann algebra: noncommutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. J. Funct. Anal., 56(1):29–78, 1984.
  60. Noise-resistant Boolean functions are juntas. preprint, 5(7):19, 2002.
  61. Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys., 54(5):052202, 30, 2013.
  62. Michel Ledoux. The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse Math. (6), 9(2):305–366, 2000. Probability theory.
  63. Michel Ledoux. The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.
  64. Michel Ledoux. Four Talagrand inequalities under the same umbrella. arXiv preprint arXiv:1909.00363, 2019.
  65. John H. Lindsey, II. Assignment of numbers to vertices. Amer. Math. Monthly, 71:508–516, 1964.
  66. Constant depth circuits, Fourier transform, and learnability. J. Assoc. Comput. Mach., 40(3):607–620, 1993.
  67. Yishay Mansour. Learning Boolean functions via the Fourier transform. In Theoretical advances in neural computation and learning, pages 391–424. Springer, 1994.
  68. Entanglement rates and the stability of the area law for the entanglement entropy. Comm. Math. Phys., 346(1):35–73, 2016.
  69. Emanuel Milman. On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math., 177(1):1–43, 2009.
  70. Emanuel Milman. Isoperimetric and concentration inequalities: equivalence under curvature lower bound. Duke Math. J., 154(2):207–239, 2010.
  71. Improving the Lieb-Robinson bound for long-range interactions. Ann. Henri Poincaré, 18(2):519–528, 2017.
  72. Quantum Boolean functions. Chicago Journal OF Theoretical Computer Science, 1:1–45, 2010.
  73. Quantum Boolean functions. arXiv preprint arXiv:0810.2435, 2010.
  74. Elchanan Mossel. A quantitative Arrow theorem. Probab. Theory Related Fields, 154(1-2):49–88, 2012.
  75. Optimal control, geometry, and quantum computing. Phys. Rev. A (3), 73(6):062323, 7, 2006.
  76. Quantum computation as geometry. Science, 311(5764):1133–1135, 2006.
  77. Michael A. Nielsen. A geometric approach to quantum circuit lower bounds. Quantum Inf. Comput., 6(3):213–262, 2006.
  78. On the degree of Boolean functions as real polynomials. Computational complexity, 4(4):301–313, 1994.
  79. Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, New York, 2014.
  80. Learning monotone decision trees in polynomial time. SIAM J. Comput., 37(3):827–844, 2007.
  81. KKL, Kruskal-Katona, and monotone nets. SIAM J. Comput., 42(6):2375–2399, 2013.
  82. Sharpness of KKL on Schreier graphs. Electron. Commun. Probab., 18:no. 18, 12, 2013.
  83. Hypercontractivity in noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces. J. Funct. Anal., 161(1):246–285, 1999.
  84. Philippe Sosoe. Fluctuations in first-passage percolation. In Random growth models, volume 75 of Proc. Sympos. Appl. Math., pages 69–93. Amer. Math. Soc., Providence, RI, 2018.
  85. Masamichi Takesaki. Theory of operator algebras. I, volume 124 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 5.
  86. Masamichi Takesaki. Theory of operator algebras. II, volume 125 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6.
  87. Michel Talagrand. On Russo’s approximate zero-one law. Ann. Probab., 22(3):1576–1587, 1994.
  88. Kevin Tanguy. Talagrand inequality at second order and application to Boolean analysis. J. Theoret. Probab., 33(2):692–714, 2020.
  89. The χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-divergence and mixing times of quantum Markov processes. J. Math. Phys., 51(12):122201, 19, 2010.
  90. Hypercontractivity of quasi-free quantum semigroups. J. Phys. A, 47(40):405303, 27, 2014.
  91. Noncommutative Bohnenblust–Hille inequalities. Math. Ann., pages 1–20, 2023.
  92. Florian Völlering. Talagrand’s inequality for interacting particle systems satisfying a log-Sobolev inequality. Ann. Inst. Henri Poincaré Probab. Stat., 52(1):173–195, 2016.
  93. Michael M Wolf. Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M, 5, 2012.
  94. Complete gradient estimates of quantum Markov semigroups. Comm. Math. Phys., 387(2):761–791, 2021.
Citations (17)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com